176 research outputs found

    Real-Axis Solution of Eliashberg Equations in Various Order-Parameter Symmetries and Tunneling Conductance of Optimally-Doped HTSC

    Full text link
    In the present work we calculate the theoretical tunneling conductance curves of SIN junctions involving high-Tc superconductors, for different possible symmetries of the order parameter (s, d, s+id, s+d, anisotropic s and extended s). To do so, we solve the real-axis Eliashberg equations in the case of an half-filled infinite band. We show that some of the peculiar characteristics of HTSC tunneling curves (dip and hump at eV > Delta, broadening of the gap peak, zero bias and so on) can be explained in the framework of the Migdal-Eliashberg theory. The theoretical dI/dV curves calculated for the different symmetries at T=4 K are then compared to various experimental tunneling data obtained in optimally-doped BSCCO, TBCO, HBCO, LSCO and YBCO single crystals. To best fit the experimental data, the scattering by non-magnetic impurities has to be taken into account, thus limiting the sensitivity of this procedure in determining the exact gap symmetry of these materials. Finally, the effect of the temperature on the theoretical tunneling conductance is also discussed and the curves obtained at T=2 K are compared to those given by the analytical continuation of the imaginary-axis solution.Comment: 6 pages, 3 figures, Proceedings of SATT10 Conference, to be published in Int. J. Mod. Phys.

    Possible d+id scenario in La_{2-x}Sr_{x}CuO_4 by point-contact measurements

    Full text link
    We analyze the results of point-contact measurements in La_{2-x}Sr_{x}CuO_{4} (LSCO) previously reported as a clear evidence of the separation between gap and pseudogap in this copper oxide. Here we show that, in addition to this, the conductance curves of our point-contact junctions -- showing clear Andreev reflection features -- can be interpreted as supporting a nodeless d_{x^2-y^2}+id_{xy}-wave symmetry of the gap in LSCO. The results of our analysis, in particular the doping dependence of the subdominant d_{xy} gap component, are discussed and compared to the predictions of different theoretical models.Comment: 6 pages, 4 eps figures, presented at SATT11 Conference (Vietri sul Mare, March 2002). To appear in Int. J. Mod. Phy

    Superconductivity of Rb3_3C60_{60}: breakdown of the Migdal-Eliashberg theory

    Full text link
    In this paper, through an exhaustive analysis within the Migdal-Eliashberg theory, we show the incompatibility of experimental data of Rb3_3C60_{60} with the basic assumptions of the standard theory of superconductivity. For different models of the electron-phonon spectral function α2F(Ω)\alpha^2F(\Omega) we solve numerically the Eliashberg equations to find which values of the electron-phonon coupling λ\lambda, of the logarithmic phonon frequency Ωln\Omega_{ln} and of the Coulomb pseudopotential μ\mu^* reproduce the experimental data of Rb3_3C60_{60}. We find that the solutions are essentially independent of the particular shape of α2F(Ω)\alpha^2F(\Omega) and that, to explain the experimental data of Rb3_3C60_{60}, one has to resort to extremely large couplings: λ=3.0±0.8\lambda=3.0\pm 0.8. This results differs from the usual partial analyses reported up to now and we claim that this value exceeds the maximum allowed λ\lambda compatible with the crystal lattice stability. Moreover, we show quantitatively that the obtained values of λ\lambda and Ωln\Omega_{ln} strongly violate Migdal's theorem and consequently are incompatible with the Migdal-Eliashberg theory. One has therefore to consider the generalization of the theory of superconductivity in the nonadiabatic regime to account for the experimental properties of fullerides.Comment: 9 pages, 8 eps figure encloses, epjb style, to appear on Eur. Phys. J.

    Possible explanation of electric-field-doped C60 phenomenology in the framework of Eliashberg theory

    Get PDF
    In a recent paper [J. H. Schön, Ch. Kloc, R. C. Haddon, and B. Batlogg, Nature (London) 408, 549 (2000)] a large increase in the superconducting critical temperature was observed in C60 doped with holes by application of a high electric field. We demonstrate that the measured Tc versus doping curves can be explained by solving the (four) s-wave Eliashberg equations in the case of a finite, non-half-filled energy band. In order to reproduce the experimental data, we assume a Coulomb pseudopotential depending on the filling in a very simple and plausible way. Reasonable values of the physical parameters involved are obtained. The application of the same approach to other experimental data [J. H. Schön, Ch. Kloc, and B. Batlogg, Science 293, 2432 (2001)] on electric field-doped, lattice-expanded C60 single crystals (Tc = 117 K in the hole-doped case) gives equally good results and sets a theoretical limit to the linear increase of Tc at the increase of the lattice spacing

    Point-contact spectroscopy in MgB2 single crystals in magnetic field

    Full text link
    We present the results of a spectroscopic study of state-of-the-art MgB2 single crystals, carried out by using a modified point-contact technique. The use of single crystals allowed us to obtain point contacts with current injection either parallel or perpendicular to the ab planes. The effect of magnetic fields up to 9 T on the conductance spectra of these contacts is here thoroughly studied, for both B parallel and perpendicular to the ab planes. The complete thermal evolution of the upper critical field of the "pi" band is determined for the first time, and quantitative information about the upper critical field of the "sigma" band and its anisotropy is obtained. Finally, by exploiting the different effect of a magnetic field applied parallel to the ab planes on the two band systems, the partial contributions of the "sigma" and "pi" bands to the total conductance are obtained separately. Fitting each of them with the standard BTK model yields a great reduction of the uncertainty on Delta_sigma and Delta_pi, whose complete temperature dependence is obtained with the greatest accuracy.Comment: 8 pages, 7 eps figure

    Direct evidence for two-band superconductivity in MgB_2 single crystals from directional point-contact spectroscopy in magnetic fields

    Get PDF
    We present the results of the first directional point-contact spectroscopy experiments in high-quality MgB_2 single crystals. Due to the directionality of the current injection into the samples, the application of a magnetic field allowed us to separate the contributions of the sigma and pi bands to the total conductance of our point contacts. By using this technique, we were able to obtain the temperature dependency of each gap independent of the other. The consequent, strong reduction of the error on the value of the gap amplitude as function of temperature allows a stricter test of the predictions of the two-band model for MgB_2.Comment: 4 pages, 5 eps figures. References added, Fig.1 changed, some text adde

    Coexistence of two order parameters and a pseudogaplike feature in the iron-based superconductor LaFeAsO_(1-x)F_x

    Full text link
    The nature and value of the order parameters (OPs) in the superconducting Fe-based oxypnictides REFeAsO_(1-x)F_x (RE = rare earth) are a matter of intense debate, also connected to the pairing mechanism which is probably unconventional. Point-contact Andreev-reflection experiments on LaFeAsO_(1-x)F_x gave us direct evidence of three energy scales in the superconducting state: a nodeless superconducting OP, Delta1 = 2.8-4.6 meV, which scales with the local Tc of the contact; a larger unconventional OP that gives conductance peaks at 9.8-12 meV, apparently closes below Tc and decreases on increasing the Tc of the contact; a pseudogaplike feature (i.e. a depression in the conductance around zero bias), that survives in the normal state up to T* ~ 140 K (close to the Neel temperature of the undoped compound), which we associate to antiferromagnetic spin fluctuations (AF SF) coexisting with superconductivity. These findings point toward a complex, unconventional nature of superconductivity in LaFeAsO_(1-x)F_x.Comment: 19 pages, 12 figures - one figure and some insets added, minor changes to the tex

    Josephson effect in MgB_2 break junctions

    Get PDF
    We present the first observation of the DC and AC Josephson effect in MgB_2 break junctions. The junctions, obtained at 4.2 K in high-quality, high-density polycrystalline metallic MgB_2 samples, show a non-hysteretic DC Josephson effect. By irradiating the junctions with microwaves we observe clear Shapiro steps spaced by the ideal ΔV\Delta V value. The temperature dependence of the DC Josephson current and the dependence of the height of the steps on the microwave power are obtained. These results are a direct prove for the existence of pairs with charge 2e in this new metallic superconductor and give evidence of the superconductor-normal metal-superconductor weak link character of these junctions.Comment: 4 RevTEX pages, 4 eps figure
    corecore