19 research outputs found

    Nucleotide sequence of Marchantia polymorpha

    No full text

    LXXLL-Related Motifs in Dax-1 Have Target Specificity for the Orphan Nuclear Receptors Ad4BP/SF-1 and LRH-1

    No full text
    The orphan receptor Ad4BP/SF-1 (NR5A1) is a constitutive activator, and its activity is repressed by another orphan receptor, Dax-1 (NR0B1). In the present study, we investigated the molecular mechanisms underlying this repression by Dax-1. Yeast two-hybrid and transient-transfection assays confirmed the necessity of three LXXLL-related motifs in Dax-1 for interaction with and repression of Ad4BP/SF-1. In vitro pull-down experiments confirmed that Dax-1 interacts with Ad4BP/SF-1 and also with LRH-1 (NR5A2). The target specificity of the LXXLL-related motifs was indicated by the observations that Ad4BP/SF-1, ERα (NR3A1), LRH-1, ERR2 (NR3B2), and fly FTZ-F1 (NR5A3) interacted through their ligand binding domains with all the LXXLL-related motifs in Dax-1 whereas HNF4 (NR2A1) and RORα (NR1F1) did not. Transcriptional activities of the receptors whose DNA binding domains (DBDs) were replaced by the GAL4 DBD were repressed by Dax-1 to various levels, which correlated with the strength of interaction. Amino acid substitutions revealed that Ad4BP/SF-1 and LRH-1 preferentially interact with L(+1)XXLL-related motifs containing serine, tyrosine, serine, and threonine at positions −2, +2, +3, and +6, respectively. Taken together, our results indicate that the specificities of LXXLL-related motifs in Dax-1 based on their amino acid sequences play an important role in regulation of orphan receptors

    Active repression of RAR signaling is required for head formation

    No full text
    The retinoic acid receptors (RARs) recruit coactivator and corepressor proteins to activate or repress the transcription of target genes depending on the presence of retinoic acid (RA). Despite a detailed molecular understanding of how corepressor complexes function, there is no in vivo evidence to support a necessary function for RAR-mediated repression. Signaling through RARs is required for patterning along the anteroposterior (A-P) axis, particularly in the hindbrain and posterior, although the absence of RA is required for correct anterior patterning. Because RARs and corepressors are present in regions in which RA is absent, we hypothesized that repression mediated through unliganded RARs might be important for anterior patterning. To test this hypothesis, specific reagents were used that either reduce or augment RAR-mediated repression. Derepression of RAR signaling by expressing a dominant-negative corepressor resulted in embryos that exhibited phenotypes similar to those treated by RA. Anterior structures such as forebrain and cement gland were greatly reduced, as was the expression of molecular markers. Enhancement of target gene repression using an RAR inverse agonist resulted in up-regulation of anterior neural markers and expansion of anterior structures. Morpholino antisense oligonucleotide-mediated RARα loss-of-function phenocopied the effects of RA treatment and dominant-negative corepressor expression. Microinjection of wild-type or dominant-negative RARα rescued the morpholino phenotype, confirming that RAR is functioning anteriorly as a transcriptional repressor. Lastly, increasing RAR-mediated repression potentiated head-inducing activity of the growth factor inhibitor cerberus, whereas releasing RAR-mediated repression blocked cerberus from inducing ectopic heads. We conclude that RAR-mediated repression of target genes is critical for head formation. This requirement establishes an important biological role for active repression of target genes by nuclear hormone receptors and illustrates a novel function for RARs during vertebrate development
    corecore