35 research outputs found

    Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution

    Get PDF
    The catalytic center for photosynthetic water-splitting consists of 4 Mn atoms and 1 Ca atom and is located near the lumenal surface of photosystem II. So far the structure of the Mn(4)Ca-cluster has been studied by a variety of techniques including X-ray spectroscopy and diffraction, and various structural models have been proposed. However, its exact structure is still unknown due to the limited resolution of crystal structures of PSII achieved so far, as well as possible radiation damages that might have occurred. Very recently, we have succeeded in solving the structure of photosystem II at 1.9 angstrom. which yielded a detailed picture of the Mn(4)CaO(5)-cluster for the first time. In the high resolution structure, the Mn(4)CaO(5)-cluster is arranged in a distorted chair form, with a cubane-like structure formed by 3 Mn and 1 Ca, 4 oxygen atoms as the distorted base of the chair, and 1 Mn and 1 oxygen atom outside of the cubane as the back of the chair. In addition, four water molecules were associated with the cluster, among which, two are associated with the terminal Mn atom and two are associated with the Ca atom. Some of these water molecules may therefore serve as the substrates for water-splitting. The high resolution structure of the catalytic center provided a solid basis for elucidation of the mechanism of photosynthetic water splitting. We review here the structural features of the Mn(4)CaO(5)-cluster analyzed at 1.9 angstrom resolution, and compare them with the structures reported previously

    Structural and functional studies on Ycf12 (Psb30) and PsbZ-deletion mutants from a thermophilic cyanobacterium

    Get PDF
    Ycf12 (Psb30) and PsbZ are two low molecular weight subunits of photosystem II (PSII), with one and two trans-membrane helices, respectively. In order to study the functions of these two subunits from a structural point of view, we constructed deletion mutants lacking either Ycf12 or PsbZ from Thermosynechococcus elongatus, and purified, crystallized and analyzed the structure of PSII dimer from the two mutants. Our results showed that Ycf12 is located in the periphery of PSII, close to PsbK, PsbZ and PsbJ, and corresponded to the unassigned helix X1 reported previously, in agreement with the recent structure at 2.9 Å resolution (A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride, Nat. Struct. Mol. Biol. 16 (2009) 334–342). On the other hand, crystals of PsbZ-deleted PSII showed a remarkably different unit cell constants from those of wild-type PSII, indicating a role of PsbZ in the interactions between PSII dimers within the crystal. This is the first example for a different arrangement of PSII dimers within the cyanobacterial PSII crystals. PSII dimers had a lower oxygen-evolving activity from both mutants than that from the wild type. In consistent with this, the relative content of PSII in the thylakoid membranes was lower in the two mutants than that in the wild type. These results suggested that deletion of both subunits affected the PSII activity, thereby destabilized PSII, leading to a decrease in the PSII content in vivo. While PsbZ was present in PSII purified from the Ycf12-deletion mutant, Ycf12 was present in crude PSII but absent in the finally purified PSII from the PsbZ-deletion mutant, indicating a preferential, stabilizing role of PsbZ for the binding of Ycf12 to PSII. These results were discussed in terms of the PSII crystal structure currently availabl

    Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography

    Get PDF
    PsbM and PsbI are two low molecular weight subunits of photosystem II (PSII), with PsbM being located in the center, and PsbI in the periphery, of the PSII dimer. In order to study the functions of these two subunits from a structural point of view, we crystallized and analyzed the crystal structure of PSII dimers from two mutants lacking either PsbM or PsbI. Our results confirmed the location of these two subunits in the current crystal structure, as well as their absence in the respective mutants. The relative contents of PSII dimers were found to be decreased in both mutants, with a concomitant increase in the amount of PSII monomers, suggesting a destabilization of PSII dimers in both of the mutants. On the other hand, the accumulation level of the overall PSII complexes in the two mutants was similar to that in the wild-type strain. Treatment of purified PSII dimers with lauryldimethylamine N-oxide at an elevated temperature preferentially disintegrated the dimers from the PsbM deletion mutant into monomers and CP43-less monomers, whereas no significant degradation of the dimers was observed from the PsbI deletion mutant. These results indicate that although both PsbM and PsbI are required for the efficient formation and stability of PSII dimers in vivo, they have different roles, namely, PsbM is required directly for the formation of dimers and its absence led to the instability of the dimers accumulated. On the other hand, PsbI is required in the assembly process of PSII dimers in vivo; once the dimers are formed, PsbI was no longer required for its stability

    An oxyl/oxo mechanism for dioxygen bond formation in PSII revealed by X-ray free electron lasers

    Get PDF
    Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation

    Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography

    Get PDF
    Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed

    Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å

    Get PDF
    Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 angstrom. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 angstrom. From our electron density map, we located all of the metal atoms of the Mn(4)CaO(5) cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn(4)CaO(5) cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail

    Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL

    Get PDF
    Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previousl
    corecore