15 research outputs found
Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage
We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate < 1 × 1 0 − 9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN
Testing CPT Invariance by High-Precision Comparisons of Fundamental Properties of Protons and Antiprotons at BASE
The BASE collaboration at the Antiproton Decelerator facility of CERN compares the fundamental properties of protons and antiprotons using advanced Penning-trap systems. In previous measurement campaigns, we measured the magnetic moments of the proton and the antiproton, reaching (sub-)parts-in-a-billion fractional uncertainty. In the latest campaign, we have compared the proton and antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts in a trillion. In this contribution, we give an overview of the measurement campaign, and detail how its results are used to constrain nine spin-independent coefficients of the Standard-Model Extension in the proton and electron sector
Ultra thin polymer foil cryogenic window for antiproton deceleration and storage
We present the design and characterisation of a cryogenic window based on an
ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure
difference larger than 1bar at a leak rate < mbar l/s.
Its thickness of approximately 1.7 m makes it transparent to various types
of particles over a broad energy range. To optimise the transfer of 100keV
antiprotons through the window, we tested the degrading properties of different
aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding
that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have
also explicitly studied the permeation as a function of coating thickness and
temperature, and have performed extensive thermal and mechanical endurance and
stress tests. Our final design integrated into the experiment has an effective
open surface consisting of 7 holes with 1 mm diameter and will transmit up to
2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility
of CERN
BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies
Currently, the only worldwide source of low-energy antiprotons is the
AD/ELENA facility located at CERN. To date, all precision measurements on
single antiprotons have been conducted at this facility and provide stringent
tests of the fundamental interactions and their symmetries. However, the
magnetic field fluctuations from the facility operation limit the precision of
upcoming measurements. To overcome this limitation, we have designed the
transportable antiproton trap system BASE-STEP to relocate antiprotons to
laboratories with a calm magnetic environment. We anticipate that the
transportable antiproton trap will facilitate enhanced tests of CPT invariance
with antiprotons, and provide new experimental possibilities of using
transported antiprotons and other accelerator-produced exotic ions. We present
here the technical design of the transportable trap system. This includes the
transportable superconducting magnet, the cryogenic inlay consisting of the
trap stack and the detection systems, and the differential pumping section to
suppress the residual gas flow into the cryogenic trap chamber.Comment: To be submitted to Rev. Sci. Instrument
Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage
We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate <1×10−9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN.We present the design and characterisation of a cryogenic window based on an ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure difference larger than 1bar at a leak rate < mbar l/s. Its thickness of approximately 1.7 m makes it transparent to various types of particles over a broad energy range. To optimise the transfer of 100keV antiprotons through the window, we tested the degrading properties of different aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature, and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of 7 holes with 1 mm diameter and will transmit up to 2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility of CERN
Image-current mediated sympathetic laser cooling of a single proton in a Penning trap down to 170 mK axial temperature
We demonstrate a new temperature record for image-current mediated sympathetic cooling of a single proton in a cryogenic Penning trap by laser-cooled Be. An axial mode temperature of 170 mK is reached, which is a 15-fold improvement compared to the previous best value. Our cooling technique is applicable to any charged particle, so that the measurements presented here constitute a milestone towards the next generation of high-precision Penning-trap measurements with exotic particles
Trap-integrated fluorescence detection based on silicon photomultipliers in a cryogenic Penning trap
We present a fluorescence-detection system for laser-cooled 9Be+ ions based on silicon photomultipliers (SiPM) operated at 4 K and integrated into our cryogenic 1.9 T multi-Penning-trap system. Our approach enables fluorescence detection in a hermetically-sealed cryogenic Penning-trap chamber with limited optical access, where state-of-the-art detection using a telescope and photomultipliers at room temperature would be extremely difficult. We characterize the properties of the SiPM in a cryocooler at 4 K, where we measure a dark count rate below 1/s and a detection efficiency of 2.5(3) %. We further discuss the design of our cryogenic fluorescence-detection trap, and analyze the performance of our detection system by fluorescence spectroscopy of 9Be+ ion clouds during several runs of our experiment
A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as an LC-circuit-based haloscope detector to search for the conversion of axion-like dark matter to radio-frequency photons. This new development increases the sensitive detection bandwidth of our axion haloscope by a factor of ≈1000