2 research outputs found

    Assembly of Core/Shell Nanospheres of Amorphous Hemin/Acetone-Derived Carbonized Polymer with Graphene Nanosheets for Room-Temperature NO Sensing

    No full text
    Implementing parts per billion-level nitric oxide (NO) sensing at room temperature (RT) is still in extreme demand for monitoring inflammatory respiratory diseases. Herein, we have prepared a kind of core-shell structural Hemin-based nanospheres (Abbr.: Hemin-nanospheres, defined as HNSs) with the core of amorphous Hemin and the shell of acetone-derived carbonized polymer, whose core-shell structure was verified by XPS with argon-ion etching. Then, the HNS-assembled reduced graphene oxide composite (defined as HNS-rGO) was prepared for RT NO sensing. The acetone-derived carbonized polymer shell not only assists the formation of amorphous Hemin core by disrupting their crystallization to release more Fe-N4 active sites, but provides protection to the core. Owing to the unique core-shell structure, the obtained HNS-rGO based sensor exhibited superior RT gas sensing properties toward NO, including a relatively higher response (Ra/Rg = 5.8, 20 ppm), a lower practical limit of detection (100 ppb), relatively reliable repeatability (over 6 cycles), excellent selectivity, and much higher long-term stability (less than a 5% decrease over 120 days). The sensing mechanism has also been proposed based on charge transfer theory. The superior gas sensing properties of HNS-rGO are ascribed to the more Fe-N4 active sites available under the amorphous state of the Hemin core and to the physical protection by the shell of acetone-derived carbonized polymer. This work presents a facile strategy of constructing a high-performance carbon-based core-shell nanostructure for gas sensing. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Bio-Electronic

    Carbon-Iron Electron Transport Channels in Porphyrin–Graphene Complex for ppb-Level Room Temperature NO Gas Sensing

    No full text
    It is a great challenge to develop efficient room-temperature sensing materials and sensors for nitric oxide (NO) gas, which is a biomarker molecule used in the monitoring of inflammatory respiratory diseases. Herein, Hemin (Fe (III)-protoporphyrin IX) is introduced into the nitrogen-doped reduced graphene oxide (N-rGO) to obtain a novel sensing material HNG-ethanol. Detailed XPS spectra and DFT calculations confirm the formation of carbon–iron bonds in HNG-ethanol during synthesis process, which act as electron transport channels from graphene to Hemin. Owing to this unique chemical structure, HNG-ethanol exhibits superior gas sensing properties toward NO gas (Ra/Rg = 3.05, 20 ppm) with a practical limit of detection (LOD) of 500 ppb and reliable repeatability (over 5 cycles). The HNG-ethanol sensor also possesses high selectivity against other exhaled gases, high humidity resistance, and stability (less than 3% decrease over 30 days). In addition, a deep understanding of the gas sensing mechanisms is proposed for the first time in this work, which is instructive to the community for fabricating sensing materials based on graphene-iron derivatives in the future.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Bio-Electronic
    corecore