397 research outputs found

    Controlled Dephasing of a Quantum Dot: From Coherent to Sequential Tunneling

    Full text link
    Resonant tunneling through identical potential barriers is a textbook problem in quantum mechanics. Its solution yields total transparency (100% tunneling) at discrete energies. This dramatic phenomenon results from coherent interference among many trajectories, and it is the basis of transport through periodic structures. Resonant tunneling of electrons is commonly seen in semiconducting 'quantum dots'. Here we demonstrate that detecting (distinguishing) electron trajectories in a quantum dot (QD) renders the QD nearly insulating. We couple trajectories in the QD to a 'detector' by employing edge channels in the integer quantum Hall regime. That is, we couple electrons tunneling through an inner channel to electrons in the neighboring outer, 'detector' channel. A small bias applied to the detector channel suffices to dephase (quench) the resonant tunneling completely. We derive a formula for dephasing that agrees well with our data and implies that just a few electrons passing through the detector channel suffice to dephase the QD completely. This basic experiment shows how path detection in a QD induces a transition from delocalization (due to coherent tunneling) to localization (sequential tunneling)

    Influence of point defects on magnetic vortex structures

    Full text link
    We employed micro-Hall magnetometry and micromagnetic simulations to investigate magnetic vortex pinning at single point defects in individual submicron-sized permalloy disks. Small ferromagnetic particles containing artificial point defects can be fabricated by using an image reversal electron beam lithography process. Corresponding micromagnetic calculations, modeling the defects within the disks as holes, give reasonable agreement between experimental and simulated pinning and depinning field values

    Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima

    Full text link
    High mobility two-dimensional electron systems exhibit vanishing resistance over broad magnetic field intervals upon excitation with microwaves, with a characteristic reduction of the resistance with increasing radiation intensity at the resistance minima. Here, we report experimental results examining the voltage - current characteristics, and the resistance at the minima vs. the microwave power. The findings indicate that a non-linear V-I curve in the absence of microwave excitation becomes linearized under irradiation, unlike expectations, and they suggest a similarity between the roles of the radiation intensity and the inverse temperature.Comment: 3 color figures; publishe

    Demonstration of a 1/4 cycle phase shift in the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices

    Get PDF
    We examine the phase and the period of the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices utilizing in-situ magnetic field calibration by Electron Spin Resonance of DiPhenyl-Picryl-Hydrazal. The results confirm a ff-independent 1/4 cycle phase shift with respect to the hf=jωchf = j\hbar\omega_{c} condition for j1j \geq 1, and they also suggest a small (\approx 2%) reduction in the effective mass ratio, m/mm^{*}/m, with respect to the standard value for GaAs/AlGaAs devices.Comment: 4 pages, 4 color figure

    Experimental Realization of a Quantum Spin Pump

    Get PDF
    We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector.Comment: related papers available at http://marcuslab.harvard.ed
    corecore