441 research outputs found
Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
The properties of linear instabilities in the Large Plasma Device [W.
Gekelman et al., Rev. Sci. Inst., 62, 2875 (1991)] are studied both through
analytic calculations and solving numerically a system of linearized
collisional plasma fluid equations using the 3D fluid code BOUT [M. Umansky et
al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully
modified to treat cylindrical geometry. Instability drive from plasma pressure
gradients and flows is considered, focusing on resistive drift waves, the
Kelvin-Helmholtz and rotational interchange instabilities. A general linear
dispersion relation for partially ionized collisional plasmas including these
modes is derived and analyzed. For LAPD relevant profiles including strongly
driven flows it is found that all three modes can have comparable growth rates
and frequencies. Detailed comparison with solutions of the analytic dispersion
relation demonstrates that BOUT accurately reproduces all characteristics of
linear modes in this system.Comment: Published in Physics of Plasmas, 17, 102107 (2010
Influence of point defects on magnetic vortex structures
We employed micro-Hall magnetometry and micromagnetic simulations to
investigate magnetic vortex pinning at single point defects in individual
submicron-sized permalloy disks. Small ferromagnetic particles containing
artificial point defects can be fabricated by using an image reversal electron
beam lithography process. Corresponding micromagnetic calculations, modeling
the defects within the disks as holes, give reasonable agreement between
experimental and simulated pinning and depinning field values
The microscopic nature of localization in the quantum Hall effect
The quantum Hall effect arises from the interplay between localized and
extended states that form when electrons, confined to two dimensions, are
subject to a perpendicular magnetic field. The effect involves exact
quantization of all the electronic transport properties due to particle
localization. In the conventional theory of the quantum Hall effect,
strong-field localization is associated with a single-particle drift motion of
electrons along contours of constant disorder potential. Transport experiments
that probe the extended states in the transition regions between quantum Hall
phases have been used to test both the theory and its implications for quantum
Hall phase transitions. Although several experiments on highly disordered
samples have affirmed the validity of the single-particle picture, other
experiments and some recent theories have found deviations from the predicted
universal behaviour. Here we use a scanning single-electron transistor to probe
the individual localized states, which we find to be strikingly different from
the predictions of single-particle theory. The states are mainly determined by
Coulomb interactions, and appear only when quantization of kinetic energy
limits the screening ability of electrons. We conclude that the quantum Hall
effect has a greater diversity of regimes and phase transitions than predicted
by the single-particle framework. Our experiments suggest a unified picture of
localization in which the single-particle model is valid only in the limit of
strong disorder
Electrometry Using Coherent Exchange Oscillations in a Singlet-Triplet-Qubit
Two level systems that can be reliably controlled and measured hold promise
in both metrology and as qubits for quantum information science (QIS). When
prepared in a superposition of two states and allowed to evolve freely, the
state of the system precesses with a frequency proportional to the splitting
between the states. In QIS,this precession forms the basis for universal
control of the qubit,and in metrology the frequency of the precession provides
a sensitive measurement of the splitting. However, on a timescale of the
coherence time, , the qubit loses its quantum information due to
interactions with its noisy environment, causing qubit oscillations to decay
and setting a limit on the fidelity of quantum control and the precision of
qubit-based measurements. Understanding how the qubit couples to its
environment and the dynamics of the noise in the environment are therefore key
to effective QIS experiments and metrology. Here we show measurements of the
level splitting and dephasing due to voltage noise of a GaAs singlet-triplet
qubit during exchange oscillations. Using free evolution and Hahn echo
experiments we probe the low frequency and high frequency environmental
fluctuations, respectively. The measured fluctuations at high frequencies are
small, allowing the qubit to be used as a charge sensor with a sensitivity of
, two orders of magnitude better than
the quantum limit for an RF single electron transistor (RF-SET). We find that
the dephasing is due to non-Markovian voltage fluctuations in both regimes and
exhibits an unexpected temperature dependence. Based on these measurements we
provide recommendations for improving in future experiments, allowing for
higher fidelity operations and improved charge sensitivity
- …