57 research outputs found

    TDP2-Dependent Non-Homologous End-Joining Protects against Topoisomerase II-Induced DNA Breaks and Genome Instability in Cells and In Vivo

    Get PDF
    Anticancer topoisomerase >poisons> exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that hydrolyses 5′-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.Gobierno Español SAF2010-21017, BFU2010-11042-EEuropean Union PERG07- 2010-268466Queen Elisabeth Medical Foundation GSKE 111

    TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1

    Get PDF
    The abortive activity of topoisomerases can result in clastogenic and/or lethal DNA damage in which the topoisomerase is covalently linked to the 3'- or 5'-terminus of a DNA strand break. This type of DNA damage is implicated in chromosome translocations and neurological disease and underlies the clinical efficacy of an important class of anticancer topoisomerase 'poisons'. Tyrosyl DNA phosphodiesterase-1 protects cells from abortive topoisomerase I (Top1) activity by hydrolyzing the 3'-phosphotyrosyl bond that links Top1 to a DNA strand break and is currently the only known human enzyme that displays this activity in cells. Recently, we identified a second tyrosyl DNA phosphodiesterase (TDP2; aka TTRAP/EAPII) that possesses weak 3'-tyrosyl DNA phosphodiesterase (3'-TDP) activity, in vitro. Herein, we have examined whether TDP2 contributes to the repair of Top1-mediated DNA breaks by deleting Tdp1 and Tdp2 separately and together in murine and avian cells. We show that while deletion of Tdp1 in wild-type DT40 cells and mouse embryonic fibroblasts decreases DNA strand break repair rates and cellular survival in response to Top1-induced DNA damage, deletion of Tdp2 does not. However, deletion of both Tdp1 and Tdp2 reduces rates of DNA strand break repair and cell survival below that observed in Tdp1(-)(/)(-) cells, suggesting that Tdp2 contributes to cellular 3'-TDP activity in the absence of Tdp1. Consistent with this idea, over-expression of human TDP2 in Tdp1(-)(/)(-)/Tdp2(-)(/)(-)(/)(-) DT40 cells increases DNA strand break repair rates and cell survival above that observed in Tdp1(-)(/)(-) DT40 cells, suggesting that Tdp2 over-expression can partially complement the defect imposed by loss of Tdp1. Finally, mice lacking both Tdp1 and Tdp2 exhibit greater sensitivity to Top1 poisons than do mice lacking Tdp1 alone, further suggesting that Tdp2 contributes to the repair of Top1-mediated DNA damage in the absence of Tdp1. In contrast, we failed to detect a contribution for Tdp1 to repair Top2-mediated damage. Together, our data suggest that Tdp1 and Tdp2 fulfil overlapping roles following Top1-induced DNA damage, but not following Top2-induced DNA damage, in vivo

    BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells

    Get PDF
    Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation

    A broken heart: A stretch too far An overview of mouse models with mutations in stretch-sensor components

    No full text
    With every heartbeat the heart must contract and relax. This seemingly trivial process critically needs tight control of contraction and relaxation phases, and extremely efficient coordination between these two phases to control blood flow and maintain cardiac homeostasis. To achieve this, specialized sensors are required to detect the inherent repeatedly changing environment and needs. One sensor is a stretch-sensor that monitors the filling of the ventricles. Its molecular identity and localization are only partly understood. Here we give a synopsis of the genetic models that leap into our understanding of stretch-sensors. We focus on the widely acknowledged sarcomeric sensor at the Z-disc and the costamere sensor at the sarcolemma. Recently, several novel components of both sensors were discovered. Given that these two sensors seem physically connected, it is likely that these two models are not mutually exclusive and might even communicate. We describe briefly how candidate and known proteins within these sensors receive and transduce mechanical signals in the cardiomyocyte that lead to changes in gene expression underlying homeostasis and its restoration in the heart. Emphasis is placed on the putative link between altered stretch-sensor function and heart failure observed in different genetic mouse models of stretch-sensor components.status: publishe

    Robustness in angiogenesis: Notch and BMP shaping waves

    No full text
    Vascular patterning involves sprouting of blood vessels, which is governed by orchestrated communication between cells in the surrounding tissue and endothelial cells (ECs) lining the blood vessels. Single ECs are selected for sprouting by hypoxia-induced stimuli and become the 'tip' or leader cell that guides new sprouts. The 'stalk' or trailing ECs proliferate for tube extension and lumenize the nascent vessel. Stalk and tip cells can dynamically switch their identities during this process in a Notch-dependent manner. Here, we review recent studies showing that bone morphogenetic protein (BMP) signaling coregulates Notch target genes in ECs. In particular, we focus on how Delta-like ligand 4 (DLL4)-Notch and BMP effector interplay may drive nonsynchronized oscillatory gene expression in ECs essential for setting sharp tip-stalk cell boundaries while sustaining a dynamic pool of nonsprouting ECs. Deeper knowledge about the coregulation of vessel plasticity in different vascular beds may result in refinement of anti-angiogenesis and vessel normalization therapies.status: publishe

    Generation of a floxed allele of Smad5 for cre-mediated conditional knockout in the mouse

    No full text
    Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.status: publishe

    Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis

    No full text
    Smads are intracellular signaling proteins that transduce signals elicited by members of the transforming growth factor (TGF)-beta superfamily. Smad5 and Smad1 are highly homologous, and they mediate primarily bone morphogenetic protein (Bmp) signals. We used the Cre-loxP system and Sm22-Cre and Tie-1-Cre mice to study the function of Smad5 in the developing blood vessel wall. Analysis of embryos demonstrated that deletion of Smad5 in endothelial or smooth muscle cells resulted in a normal organization of embryonic and extra-embryonic vasculature. Angiogenic assays performed in adult mice revealed that mutant mice display a comparable angiogenic and vascular remodeling response to control mice. In Sm22-Cre; Smad5(fl/-) mice, Smad5 is also deleted in cardiomyocytes. Echocardiographic analysis on those 9-month-old female mice demonstrated larger left ventricle internal diameters and decreased fractional shortening compared with control littermates without signs of cardiac hypertrophy. The decreased cardiac contractility was associated with a decreased performance in a treadmill experiment. In isolated cardiomyocytes, fractional shortening was significantly reduced compared with control cells. These data demonstrate that restricted deletion of Smad5 in the blood vessel wall results in viable mice. However, loss of Smad5 in cardiomyocytes leads to a mild heart defect.status: publishe
    corecore