1 research outputs found

    One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients:results from the ColoCare Study

    Get PDF
    B-vitamins involved in one-carbon metabolism have been implicated in the development of inflammation- A nd angiogenesis-related chronic diseases, such as colorectal cancer. Yet, the role of one-carbon metabolism in inflammation and angiogenesis among colorectal cancer patients remains unclear.The objective of this study was to investigate associations of components of one-carbon metabolism with inflammation and angiogenesis biomarkers among newly diagnosed colorectal cancer patients (n=238) in the prospective ColoCare Study, Heidelberg.We cross-sectionally analyzed associations between 12 B-vitamins and one-carbon metabolites and 10 inflammation and angiogenesis biomarkers from pre-surgery serum samples using multivariable linear regression models. We further explored associations among novel biomarkers in these pathways with Spearman partial correlation analyses. We hypothesized that pyridoxal-5'-phosphate (PLP) is inversely associated with inflammatory biomarkers.We observed that PLP was inversely associated with CRP (r=-0.33, plinearlinear=0.003), IL-6 (r=-0.39, plinear linear=0.02) and TNFα (r=-0.12, plinear=0.045). Similar findings were observed for 5-methyl-tetrahydrofolate and CRP (r=-0.14), SAA (r=-0.14) and TNFα (r=-0.15) among colorectal cancer patients. Folate catabolite apABG was positively correlated with IL-6 (r= 0.27, plinearlinear<0.0001), indicating higher folate utilization during inflammation.Our data support the hypothesis of inverse associations between PLP and inflammatory biomarkers among colorectal cancer patients. A better understanding of the role and inter-relation of PLP and other one-carbon metabolites with inflammatory processes among colorectal carcinogenesis and prognosis could identify targets for future dietary guidance for colorectal cancer patients.</p
    corecore