505 research outputs found

    Near Optimal Online Distortion Minimization for Energy Harvesting Nodes

    Full text link
    We consider online scheduling for an energy harvesting communication system where a sensor node collects samples from a Gaussian source and sends them to a destination node over a Gaussian channel. The sensor is equipped with a finite-sized battery that is recharged by an independent and identically distributed (i.i.d.) energy harvesting process over time. The goal is to minimize the long term average distortion of the source samples received at the destination. We study two problems: the first is when sampling is cost-free, and the second is when there is a sampling cost incurred whenever samples are collected. We show that fixed fraction policies [Shaviv-Ozgur], in which a fixed fraction of the battery state is consumed in each time slot, are near-optimal in the sense that they achieve a long term average distortion that lies within a constant additive gap from the optimal solution for all energy arrivals and battery sizes. For the problem with sampling costs, the transmission policy is bursty; the sensor can collect samples and transmit for only a portion of the time.Comment: To appear in the 2017 IEEE International Symposium on Information Theor

    Secrecy Capacity of a Class of Broadcast Channels with an Eavesdropper

    Full text link
    We study the security of communication between a single transmitter and multiple receivers in a broadcast channel in the presence of an eavesdropper. We consider several special classes of channels. As the first model, we consider the degraded multi-receiver wiretap channel where the legitimate receivers exhibit a degradedness order while the eavesdropper is more noisy with respect to all legitimate receivers. We establish the secrecy capacity region of this channel model. Secondly, we consider the parallel multi-receiver wiretap channel with a less noisiness order in each sub-channel, where this order is not necessarily the same for all sub-channels. We establish the common message secrecy capacity and sum secrecy capacity of this channel. Thirdly, we study a special class of degraded parallel multi-receiver wiretap channels and provide a stronger result. In particular, we study the case with two sub-channels two users and one eavesdropper, where there is a degradedness order in each sub-channel such that in the first (resp. second) sub-channel the second (resp. first) receiver is degraded with respect to the first (resp. second) receiver, while the eavesdropper is degraded with respect to both legitimate receivers in both sub-channels. We determine the secrecy capacity region of this channel. Finally, we focus on a variant of this previous channel model where the transmitter can use only one of the sub-channels at any time. We characterize the secrecy capacity region of this channel as well.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (Special Issue on Wireless Physical Layer Security

    Dependence Balance Based Outer Bounds for Gaussian Networks with Cooperation and Feedback

    Full text link
    We obtain new outer bounds on the capacity regions of the two-user multiple access channel with generalized feedback (MAC-GF) and the two-user interference channel with generalized feedback (IC-GF). These outer bounds are based on the idea of dependence balance which was proposed by Hekstra and Willems [1]. To illustrate the usefulness of our outer bounds, we investigate three different channel models. We first consider a Gaussian MAC with noisy feedback (MAC-NF), where transmitter kk, k=1,2k=1,2, receives a feedback YFkY_{F_{k}}, which is the channel output YY corrupted with additive white Gaussian noise ZkZ_{k}. As the feedback noise variances become large, one would expect the feedback to become useless, which is not reflected by the cut-set bound. We demonstrate that our outer bound improves upon the cut-set bound for all non-zero values of the feedback noise variances. Moreover, in the limit as σZk2\sigma_{Z_{k}}^{2}\to \infty, k=1,2k=1,2, our outer bound collapses to the capacity region of the Gaussian MAC without feedback. Secondly, we investigate a Gaussian MAC with user-cooperation (MAC-UC), where each transmitter receives an additive white Gaussian noise corrupted version of the channel input of the other transmitter [2]. For this channel model, the cut-set bound is sensitive to the cooperation noises, but not sensitive enough. For all non-zero values of cooperation noise variances, our outer bound strictly improves upon the cut-set outer bound. Thirdly, we investigate a Gaussian IC with user-cooperation (IC-UC). For this channel model, the cut-set bound is again sensitive to cooperation noise variances but not sensitive enough. We demonstrate that our outer bound strictly improves upon the cut-set bound for all non-zero values of cooperation noise variances.Comment: Submitted to IEEE Transactions on Information Theor
    corecore