37 research outputs found
Funktionelle und genetische Analyse des Latenten Membranproteins 1 des Epstein-Barr Virus
Epstein-Barr Virus (EBV) infiziert ruhende primäre humane B-Zellen und induziert deren
unbegrenzte Proliferation. Dieser Prozess der B-Zell-Immortalisation ist ein Modellsystem,
das die pathogenetischen Mechanismen bei der Tumorentstehung widerspiegelt. In vitro gilt
das virale latente Membranprotein 1 (LMP1) für die Immortalisation von B-Zellen als
essentiell. LMP1 ist ein integrales Membranprotein, das als konstitutiv aktivierter
Pseudorezeptor verschiedene Signalwege in der B-Zelle induziert und dabei analoge
Funktionen zum zellulären CD40-Rezeptor wahrnimmt.
Das Genom des EBV ist in dem Maxi-EBV-System einer genetischen Manipulation
zugänglich. Zuerst habe ich verschiedene Mutanten des LMP1 Gens im Kontext des EBVGenoms
etabliert und auf ihren Phänotyp untersucht. Überraschenderweise war es möglich,
mit allen LMP1 mutierten EBVs proliferierende B-Zellklone zu generieren, dies gelang sogar
mit einer „knock out“ Mutante des kompletten LMP1 Gens. Die zehn verschiedenen LMP1-
Mutanten unterschieden sich gravierend in ihrer Effizienz, B-Zellen zu immortalisieren. So
wurden bis zu 100 mal mehr Virionen benötigt, um z.B. mit der LMP1-„knock out“-Mutante
proliferierende B-Zellklone zu etablieren. Eine solche B-Zelllinie wies in einem in vivo
Experiment mit SCID-Mäusen im Gegensatz zu B-Zelllinien mit Wildtypvirus kein
onkogenes Potential auf. Im Widerspruch zu den bisherigen Veröffentlichungen einer anderen
Gruppe zeigen meine Ergebnisse, dass LMP1 für den Prozess der B-Zell-Immortalisation in
vitro zwar kritisch, aber nicht zwingend notwendig ist. Für die Onkogenität von EBV in vivo
ist LMP1 dagegen absolut essentiell.
Die Zielgene des LMP1, die die verschiedenen Effekte wie B-Zell-Immortalisation,
Onkogenität und Tumorentstehung vermitteln, sind nicht vollständig bekannt. Ein zweites
Ziel dieser Arbeit war deshalb die umfassende Katalogisierung dieser Zielgene. Da LMP1 und
der CD40-Rezeptor analoge Funktionen und gemeinsame Signalmediatoren und -wege
aufweisen, sollten vergleichende Untersuchungen von LMP1- und CD40-regulierten Genen
durchgeführt werden. Zu diesem Zweck wurde ein konditionales LMP1-System in humanen
B-Zellen etabliert, das es erlaubt, LMP1-Signaltransduktion innerhalb eines sehr kurzen,
definierten Zeitraums zu induzieren und differentiell exprimierte Gene zu identifizieren. Da
der CD40-Rezeptor auf humanen B-Zellen konstitutiv exprimiert ist und durch Interaktion mit
seinem Liganden aktiviert werden kann, konnte die Analyse CD40-regulierter Zielgene im
selben Zellsystem erfolgen. Unter Anwendung von ATLAS Array-Filtern und Affymetrix Chips wurden 144 LMP1- und 28 CD40-regulierte Gene identifiziert. Schließlich konnte in
Zellzyklusanalysen gezeigt werden, dass LMP1-Signale in humanen B-Zellen echte
proliferative Effekte vermitteln und nicht nur anti-apoptotische Funktionen erfüllen
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion
Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells
MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (Treg) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatment with MVA-BN®-HER2 induced strongly Th1-dominated HER-2-specific antibody and T-cell responses. MVA-BN®-HER2-induced anti-tumor activity was characterized by an increased infiltration of lungs with highly activated, HER-2-specific, CD8+CD11c+ T cells accompanied by a decrease in the frequency of Treg cells in the lung, resulting in a significantly increased ratio of effector T cells to Treg cells. In contrast, administration of HER2 protein formulated in Complete Freund’s Adjuvant (CFA) induced a strongly Th2-biased immune response to HER-2. However, this did not lead to significant infiltration of the tumor-bearing lungs by CD8+ T cells or the decrease in the frequency of Treg cells nor did it result in anti-tumor efficacy. In vivo depletion of CD8+ cells confirmed that CD8 T cells were required for the anti-tumor activity of MVA-BN®-HER2. Furthermore, depletion of CD4+ or CD25+ cells demonstrated that tumor-induced Treg cells promoted tumor growth and that CD4 effector cells also contribute to MVA-BN®-HER2-mediated anti-tumor efficacy. Taken together, our data demonstrate that treatment with MVA-BN®-HER2 controls tumor growth through mechanisms including the induction of Th1-biased HER-2-specific immune responses and the control of tumor-mediated immunosuppression
A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses.
Modified vaccinia virus Ankara (MVA) has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines
Latent Membrane Protein 1 of Epstein-Barr Virus Induces CD83 by the NF-κB Signaling Pathway
Epstein-Barr virus (EBV) infects human resting B cells and transforms them in vitro into continuously growing lymphoblastoid cell lines (LCLs). EBV nuclear antigen 2 (EBNA2) is one of the first viral proteins expressed after infection. It is able to transactivate viral as well as cellular target genes by interaction with cellular transcription factors. EBNA2 target genes can be studied easily by using an LCL (ER/EB2-5) in which wild-type EBNA2 is replaced by an estrogen-inducible EBNA2. Since the cell surface molecule CD83, a member of the immunoglobulin superfamily and a marker for mature dendritic cells, appeared on the surface of ER/EB2-5 cells within 3 h after the addition of estrogen, we analyzed the regulation of CD83 induction by EBV in more detail. Despite its rapid induction, CD83 turned out to be an indirect target gene of EBNA2. We could show that the viral latent membrane protein 1 (LMP1) is responsible for the induction of CD83 by using an LCL expressing a ligand- or antibody-inducible recombinant nerve growth factor receptor-LMP1 fusion protein. The inducibility of the CD83 promoter by LMP1 was mediated by the activation of NF-κB, as seen by use of luciferase reporter assays using the CD83 promoter and LMP1 mutants. Additionally, fusion constructs of the transmembrane domain of LMP1 and the intracellular signaling domain of CD40, TNF-R1, and TNF-R2 likewise transactivated the CD83 promoter via NF-κB. Our studies show that CD83 is also a target of the NF-κB signaling pathway in B cells