34 research outputs found

    Optimal Phonon-to-Spin Mapping in a system of a trapped ion

    Full text link
    We propose a protocol for measurement of the phonon number distribution of a harmonic oscillator based on selective mapping to a discrete spin-1/2 degree of freedom. We consider a system of a harmonically trapped ion, where a transition between two long lived states can be driven with resolved motional sidebands. The required unitary transforms are generated by amplitude-modulated polychromatic radiation fields, where the time-domain ramps are obtained from numerical optimization by application of the Chopped RAndom Basis (CRAB) algorithm. We provide a detailed analysis of the scaling behavior of the attainable fidelities and required times for the mapping transform with respect to the size of the Hilbert space. As one application we show how the mapping can be employed as a building block for experiments which require measurement of the work distribution of a quantum process

    A single ion as a shot noise limited magnetic field gradient probe

    Full text link
    It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of \Delta B/B_0 ~ 5*10^{-7} over a test distance of 140 \micro m, which can be extended to the mm range, still with sub \micro m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic field gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.Comment: 5 pages, 3 figure

    Trapped atoms in spatially-structured vector light fields

    Full text link
    Spatially-structured laser beams, eventually carrying orbital angular momentum, affect electronic transitions of atoms and their motional states in a complex way. We present a general framework, based on the spherical tensor decomposition of the interaction Hamiltonian, for computing atomic transition matrix elements for light fields of arbitrary spatial mode and polarization structures. We study both the bare electronic matrix elements, corresponding to transitions with no coupling to the atomic center-of-mass motion, as well as the matrix elements describing the coupling to the quantized atomic motion in the resolved side-band regime. We calculate the spatial dependence of electronic and motional matrix elements for tightly focused Hermite-Gaussian, Laguerre-Gaussian and for radially and azimuthally polarized beams. We show that near the diffraction limit, all these beams exhibit longitudinal fields and field gradients, which strongly affect the selection rules and could be used to tailor the light-matter interaction. The presented framework is useful for describing trapped atoms or ions in spatially-structured light fields and therefore for designing new protocols and setups in quantum optics, -sensing and -information processing
    corecore