37 research outputs found
Transition from van-der-Waals to H Bonds dominated Interaction in n-Propanol physisorbed on Graphite
Multilayer sorption isotherms of 1-propanol on graphite have been measured by
means of high-resolution ellipsometry within the liquid regime of the adsorbed
film for temperatures ranging from 180 to 260 K. In the first three monolayers
the molecules are oriented parallel to the substrate and the growth is roughly
consistent with the Frenkel-Halsey-Hill-model (FHH) that is obeyed in
van-der-Waals systems on strong substrates. The condensation of the fourth and
higher layers is delayed with respect to the FHH-model. The fourth layer is
actually a bilayer. Furthermore there is indication of a wetting transition.
The results are interpreted in terms of hydrogen-bridge bonding within and
between the layers.Comment: 4 pages, 3 figure
Phenylacrylic acids addition to potato and sweet potato showed no impact on acrylamide concentration via oxa-Michael-addition during frying
Three phenolic acids, p-coumaric, ferulic and caffeic acid as well as cinnamic acid were added to raw potatoes and sweet potatoes before frying. A distinct mitigation of acrylamide was not detected. Fried samples were analysed for postulated adducts of a direct reaction between acrylamide and these phenolic acids using LC-MS. In a model system with pure compounds (phenylacrylic acid and acrylamide) heated on 10% hydrated silica gel one specific adduct (respective m/z for M ​+ ​H+) was formed in each reaction. MS/MS-data suggested an oxa-Michael formation of 3-amino-3-oxopropyl-phenylacrylates, which was confirmed by de novo syntheses along an SN2 substitution of 3-chloropropanamide. Exemplarily, the structure of the ester was confirmed for p-coumaric acid by NMR-data. Standard addition revealed that 3-amino-(3-oxopropyl-phenyl)-acrylates occurred neither in fried potato nor in sweet potato, while a formation was shown in phenylacrylic acid plus acrylamide supplemented potatoes and sweet potatoes
Studies of the structure and growth mode of dotriacontane films by synchrotron x-ray scattering and molecular dynamics simulations
doi: 10.1088/0953-8984/16/29/005We report on synchrotron x-ray scattering experiments and molecular dynamics simulations of the structure and growth mode of dotriacontane (n-C32H66 or C32) films adsorbed on Ag(111) and SiO2-coated Si(100) substrates. On the SiO2 surface, the x-ray measurements confirm a structural model of the solid film inferred from high-resolution ellipsometry measurements in which one or two layers of C32 adsorb with the long axis of the molecule oriented parallel to the interface followed by a monolayer in which the molecules have a perpendicular orientation. At higher C32 coverages, preferentially oriented bulk particles nucleate, consistent with a Stranski-Krastanov growth mode. On the Ag(111) surface, we again observe one or two layers of the 'parallel' film but no evidence of the perpendicular monolayer before nucleation of the preferentially oriented bulk particles. We compare the experimentally observed structures with molecular dynamics simulations of a multilayer film of the homologous C24 molecule.This work was support by US National Science Foundation under Grant Nos. DMR-9802476 and DMR-0109057. The Midwest Universities Collaborative Access Team (MUCAT) sector at the Advanced Photon Source (APS) is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), through Ames Laboratory under ContractNo.W-7405-Eng-82. Use of the APS was supported by the DOE BES under Contract No. W-31-109-ENG-38
Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces
doi:10.1063/1.3213642Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films without coexisting bulk particles, which allows us to isolate the contribution to the ellipsometric signal from a monolayer of molecules oriented with their long axis perpendicular to the SiO2 surface. For these submonolayer films, we found a step in the ellipsometer signal at ~331 K, which we identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (~333 K) and with the transition to the rotator phase in bulk crystallites (~337 K), respectively. After considering three alternative explanations, we propose that the step upward in the ellipsometric signal observed at ~331 K on heating the submonolayer film is the signature of a transition from a perpendicular monolayer phase to a denser phase in which the alkane chains contain on average one to two gauche defects per molecule.This work was supported by the Chilean
government through FONDECYT Grant Nos. 1060628 and 7080105 and by CONICYT scholarships (E.A.C., V.d.C. and
P.A.S.), and by the U.S. NSF Grant No. DMR-0705974
Disrupting the Acyl Carrier Protein/SpoT Interaction In Vivo: Identification of ACP Residues Involved in the Interaction and Consequence on Growth
In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation
Poly(ester)s and poly(amide)s with fluorene and diphenyl-silane units in the main chain: Effects of iodine doping on the structure and electrical conductivity
Intramolecular charge transfer interaction between the electron donor and electro acceptor units within the polymeric structure and its optoelectronic properties were studied. The monomer, 9H-fluorene-2,7-dicarboxylic acid, was prepared from 9H-fluorene-2,7-dicarbonitrile using CuCN/N,N-dimethylformamide followed by the decomposition of the complex with FeCl 3x6H 2O in HCl and KOH/H 2O. The formation of two new classes of polymers was reported at different reaction times. The poly(ester) (PEF) was synthesized by the reaction of the diacid monomer with bis(4-hydroxiphenyl) diphenylsilane using tosyl chloride/pyridine/dimethylformamide system as condensing agent. Alternatively, the poly(amide) (PAF) was synthesized by the direct polycondensation of the diacid monomer and bis(4-aminophenyl) diphenylsilane in N-methyl-2-pyrrolidine solution containing dissolved calcium chloride. The resulting new polymers were obtained in good yields and were characterized by FTIR, NMR ( 1H, 13C, and 29Si
Magnetization reversal in cobalt antidot arrays
We have carried out a detailed study of the magnetic switching in square lattice cobalt antidot arrays with periods ranging from 2 ÎĽm down to 200 nm (antidot size=antidot separation). Magneto-optical Kerr effect measurements show first a small change in the magnetization due to a reversible rotation of the magnetic spins in the antidot rows, followed by a large change due to reversal of the antidot array columns parallel to the applied field. Employing x-ray photoemission electron microscopy and transmission x-ray microscopy, the latter irreversible process was observed as a nucleation and propagation of discrete domain chains. The propagating chain ends are blocked by perpendicular chains present in the antidot rows via various mechanisms revealed by micromagnetic simulations
Easy axis magnetization reversal in cobalt antidot arrays
The magnetization reversal in square lattice cobalt antidot arrays with the applied field at 45° to the antidot rows was investigated using Lorentz electron microscopy in the Fresnel mode. While the hysteresis loops from magneto-optical Kerr effect measurements only reflect the easy axis character of the reversal, several different reversal processes were identified in the Fresnel images depending on the field history. Details of this complex magnetization reversal were elucidated with micromagnetic simulations
How water wets and self-hydrophilizes nanopatterns of physisorbed hydrocarbons
HypothesisWeakly bound, physisorbed hydrocarbons could in principle provide a similar water-repellency as obtained by chemisorption of strongly bound hydrophobic molecules at surfaces.ExperimentsHere we present experiments and computer simulations on the wetting behaviour of water on molecularly thin, self-assembled alkane carpets of dotriacontane (n-CH or C32) physisorbed on the hydrophilic native oxide layer of silicon surfaces during dip-coating from a binary alkane solution. By changing the dip-coating velocity we control the initial C32 surface coverage and achieve distinct film morphologies, encompassing homogeneous coatings with self-organised nanopatterns that range from dendritic nano-islands to stripes.FindingsThese patterns exhibit a good water wettability even though the carpets are initially prepared with a high coverage of hydrophobic alkane molecules. Using in-liquid atomic force microscopy, along with molecular dynamics simulations, we trace this to a rearrangement of the alkane layers upon contact with water. This restructuring is correlated to the morphology of the C32 coatings, i.e. their fractal dimension. Water molecules displace to a large extent the first adsorbed alkane monolayer and thereby reduce the hydrophobic C32 surface coverage. Thus, our experiments evidence that water molecules can very effectively hydrophilize initially hydrophobic surfaces that consist of weakly bound hydrocarbon carpets