5,134 research outputs found

    The Morse theory of \v{C}ech and Delaunay complexes

    Full text link
    Given a finite set of points in Rn\mathbb R^n and a radius parameter, we study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the \v{C}ech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.Comment: 21 pages, 2 figures, improved expositio

    Induced Matchings and the Algebraic Stability of Persistence Barcodes

    Full text link
    We define a simple, explicit map sending a morphism f:MNf:M \rightarrow N of pointwise finite dimensional persistence modules to a matching between the barcodes of MM and NN. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of kerf\ker f and cokerf\mathop{\mathrm{coker}} f. As an immediate corollary, we obtain a new proof of the algebraic stability of persistence, a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ\delta-interleaving morphism between two persistence modules induces a δ\delta-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules, and yields a novel "single-morphism" characterization of the interleaving relation on persistence modules.Comment: Expanded journal version, to appear in Journal of Computational Geometry. Includes a proof that no definition of induced matching can be fully functorial (Proposition 5.10), and an extension of our single-morphism characterization of the interleaving relation to multidimensional persistence modules (Remark 6.7). Exposition is improved throughout. 11 Figures adde

    Parametrized Complexity of Expansion Height

    Get PDF
    Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in topology, which is famously undecidable. There exists a combinatorial refinement of this concept, called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type if they can be transformed into each other by a sequence of two basic homotopy equivalences, an elementary collapse and its inverse, an elementary expansion. In this article we consider the following related problem: given a 2-dimensional simplicial complex, is there a simple-homotopy equivalence to a 1-dimensional simplicial complex using at most p expansions? We show that the problem, which we call the erasability expansion height, is W[P]-complete in the natural parameter p

    Distributed computation of persistent homology

    Full text link
    Persistent homology is a popular and powerful tool for capturing topological features of data. Advances in algorithms for computing persistent homology have reduced the computation time drastically -- as long as the algorithm does not exhaust the available memory. Following up on a recently presented parallel method for persistence computation on shared memory systems, we demonstrate that a simple adaption of the standard reduction algorithm leads to a variant for distributed systems. Our algorithmic design ensures that the data is distributed over the nodes without redundancy; this permits the computation of much larger instances than on a single machine. Moreover, we observe that the parallelism at least compensates for the overhead caused by communication between nodes, and often even speeds up the computation compared to sequential and even parallel shared memory algorithms. In our experiments, we were able to compute the persistent homology of filtrations with more than a billion (10^9) elements within seconds on a cluster with 32 nodes using less than 10GB of memory per node

    On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces

    Get PDF
    Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity of the space of persistence diagrams equipped with their diagram distances, most of the recent attempts at using persistence diagrams in machine learning have been done through kernel methods, i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all computations can be performed easily. Since persistence diagrams enjoy theoretical stability guarantees for the diagram distances, the metric properties of the feature map, i.e., the relationship between the Hilbert distance and the diagram distances, are of central interest for understanding if the persistence diagram guarantees carry over to the embedding. In this article, we study the possibility of embedding persistence diagrams into separable Hilbert spaces with bi-Lipschitz maps. In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces defined in the literature, any lower bound must depend on the cardinalities of the persistence diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is impossible, even when restricting the persistence diagrams to have bounded cardinalities

    \v{C}ech-Delaunay gradient flow and homology inference for self-maps

    Full text link
    We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspace of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for \v{C}ech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive \v{C}ech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.Comment: 22 pages, 8 figure

    A Stable Multi-Scale Kernel for Topological Machine Learning

    Full text link
    Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes
    corecore