5,134 research outputs found
The Morse theory of \v{C}ech and Delaunay complexes
Given a finite set of points in and a radius parameter, we
study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes
in the light of generalized discrete Morse theory. Establishing the \v{C}ech
and Delaunay complexes as sublevel sets of generalized discrete Morse
functions, we prove that the four complexes are simple-homotopy equivalent by a
sequence of simplicial collapses, which are explicitly described by a single
discrete gradient field.Comment: 21 pages, 2 figures, improved expositio
Induced Matchings and the Algebraic Stability of Persistence Barcodes
We define a simple, explicit map sending a morphism of
pointwise finite dimensional persistence modules to a matching between the
barcodes of and . Our main result is that, in a precise sense, the
quality of this matching is tightly controlled by the lengths of the longest
intervals in the barcodes of and . As an
immediate corollary, we obtain a new proof of the algebraic stability of
persistence, a fundamental result in the theory of persistent homology. In
contrast to previous proofs, ours shows explicitly how a -interleaving
morphism between two persistence modules induces a -matching between
the barcodes of the two modules. Our main result also specializes to a
structure theorem for submodules and quotients of persistence modules, and
yields a novel "single-morphism" characterization of the interleaving relation
on persistence modules.Comment: Expanded journal version, to appear in Journal of Computational
Geometry. Includes a proof that no definition of induced matching can be
fully functorial (Proposition 5.10), and an extension of our single-morphism
characterization of the interleaving relation to multidimensional persistence
modules (Remark 6.7). Exposition is improved throughout. 11 Figures adde
Parametrized Complexity of Expansion Height
Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in topology, which is famously undecidable. There exists a combinatorial refinement of this concept, called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type if they can be transformed into each other by a sequence of two basic homotopy equivalences, an elementary collapse and its inverse, an elementary expansion. In this article we consider the following related problem: given a 2-dimensional simplicial complex, is there a simple-homotopy equivalence to a 1-dimensional simplicial complex using at most p expansions? We show that the problem, which we call the erasability expansion height, is W[P]-complete in the natural parameter p
Distributed computation of persistent homology
Persistent homology is a popular and powerful tool for capturing topological
features of data. Advances in algorithms for computing persistent homology have
reduced the computation time drastically -- as long as the algorithm does not
exhaust the available memory. Following up on a recently presented parallel
method for persistence computation on shared memory systems, we demonstrate
that a simple adaption of the standard reduction algorithm leads to a variant
for distributed systems. Our algorithmic design ensures that the data is
distributed over the nodes without redundancy; this permits the computation of
much larger instances than on a single machine. Moreover, we observe that the
parallelism at least compensates for the overhead caused by communication
between nodes, and often even speeds up the computation compared to sequential
and even parallel shared memory algorithms. In our experiments, we were able to
compute the persistent homology of filtrations with more than a billion (10^9)
elements within seconds on a cluster with 32 nodes using less than 10GB of
memory per node
On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces
Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity of the space of persistence diagrams equipped with their diagram distances, most of the recent attempts at using persistence diagrams in machine learning have been done through kernel methods, i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all computations can be performed easily. Since persistence diagrams enjoy theoretical stability guarantees for the diagram distances, the metric properties of the feature map, i.e., the relationship between the Hilbert distance and the diagram distances, are of central interest for understanding if the persistence diagram guarantees carry over to the embedding. In this article, we study the possibility of embedding persistence diagrams into separable Hilbert spaces with bi-Lipschitz maps. In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces defined in the literature, any lower bound must depend on the cardinalities of the persistence diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is impossible, even when restricting the persistence diagrams to have bounded cardinalities
\v{C}ech-Delaunay gradient flow and homology inference for self-maps
We call a continuous self-map that reveals itself through a discrete set of
point-value pairs a sampled dynamical system. Capturing the available
information with chain maps on Delaunay complexes, we use persistent homology
to quantify the evidence of recurrent behavior. We establish a sampling theorem
to recover the eigenspace of the endomorphism on homology induced by the
self-map. Using a combinatorial gradient flow arising from the discrete Morse
theory for \v{C}ech and Delaunay complexes, we construct a chain map to
transform the problem from the natural but expensive \v{C}ech complexes to the
computationally efficient Delaunay triangulations. The fast chain map algorithm
has applications beyond dynamical systems.Comment: 22 pages, 8 figure
A Stable Multi-Scale Kernel for Topological Machine Learning
Topological data analysis offers a rich source of valuable information to
study vision problems. Yet, so far we lack a theoretically sound connection to
popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In
this work, we establish such a connection by designing a multi-scale kernel for
persistence diagrams, a stable summary representation of topological features
in data. We show that this kernel is positive definite and prove its stability
with respect to the 1-Wasserstein distance. Experiments on two benchmark
datasets for 3D shape classification/retrieval and texture recognition show
considerable performance gains of the proposed method compared to an
alternative approach that is based on the recently introduced persistence
landscapes
- …