128 research outputs found
Dissecting the knee - Air shower measurements with KASCADE
Recent results of the KASCADE air shower experiment are presented in order to
shed some light on the astrophysics of cosmic rays in the region of the knee in
the energy spectrum. The results include investigations of high-energy
interactions in the atmosphere, the analysis of the arrival directions of
cosmic rays, the determination of the mean logarithmic mass, and the unfolding
of energy spectra for elemental groups
Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria
Objective To expand the clinical and genetic spectrum of nemaline myopathy 10 by a series of Austrian and German patients with a milder disease course and missense mutations in LMOD3. Methods We characterized the clinical features and the genetic status of 4 unrelated adolescent or adult patients with nemaline myopathy. Results The 4 patients showed a relatively mild disease course. They all have survived into adulthood, 3 of 4 have remained ambulatory, and all showed marked facial weakness. Muscle biopsy specimens gave evidence of nemaline bodies. All patients were unrelated but originated from Austria (Tyrol and Upper Austria) and Southern Germany (Bavaria). All patients carried the missense variant c.1648C>T, p.(Leu550Phe) in the LMOD3 gene, either on both alleles or in trans with another missense variant (c.1004A>G, p.Gln335Arg). Both variants were not reported previously. Conclusions In 2014, a severe form of congenital nemaline myopathy caused by disrupting mutations in LMOD3 was identified and denoted as NEM10. Unlike the previously reported patients, who had a severe clinical picture with a substantial risk of early death, our patients showed a relatively mild disease course. As the missense variant c.1648C>T is located further downstream compared to all previously published LMOD3 mutations, it might be associated with higher protein expression compared to the reported loss-of-function mutations. The apparent clusters of 2 mild mutations in Germany and Austria in 4 unrelated families may be explained by a founder effect
Cosmic Ray Energy Spectra and Mass Composition at the Knee - Recent Results from KASCADE -
Recent results from the KASCADE experiment on measurements of cosmic rays in
the energy range of the knee are presented. Emphasis is placed on energy
spectra of individual mass groups as obtained from an two-dimensional unfolding
applied to the reconstructed electron and truncated muon numbers of each
individual EAS. The data show a knee-like structure in the energy spectra of
light primaries (p, He, C) and an increasing dominance of heavy ones (A > 20)
towards higher energies. This basic result is robust against uncertainties of
the applied interaction models QGSJET and SIBYLL which are used in the shower
simulations to analyse the data. Slight differences observed between
experimental data and EAS simulations provide important clues for further
improvements of the interaction models. The data are complemented by new limits
on global anisotropies in the arrival directions of CRs and by upper limits on
point sources. Astrophysical implications for discriminating models of maximum
acceleration energy vs galactic diffusion/drift models of the knee are
discussed based on this data.Comment: 8 pages, 7 figures, to appear in Nuclear Physics B, Proceedings
Supplements, as part of the volume for the CRIS 2004, Cosmic Ray
International Seminar: GZK and Surrounding
KASCADE: Astrophysical results and tests of hadronic interaction models
KASCADE is a multi-detector setup to get redundant information on single air
shower basis. The information is used to perform multiparameter analyses to
solve the threefold problem of the reconstruction of (i)the unknown primary
energy, (ii) the primary mass, and (iii) to quantify the characteristics of the
hadronic interactions in the air-shower development. In this talk recent
results of the KASCADE data analyses are summarized concerning cosmic ray
anisotropy studies, determination of flux spectra for different primary mass
groups, and approaches to test hadronic interaction models. Neither large scale
anisotropies nor point sources were found in the KASCADE data set. The energy
spectra of the light element groups result in a knee-like bending and a
steepening above the knee. The topology of the individual knee positions shows
a dependency on the primary particle. Though no hadronic interaction model is
fully able to describe the multi-parameter data of KASCADE consistently, the
more recent models or improved versions of older models reproduce the data
better than few years ago.Comment: to appear in Nucl. Phys. B (Proc. Suppl.), Proc. of the XIII
ISVHECRI, Pylos 2004 - with a better quality of the figure
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis
Objective Current non-invasive diagnostic tests can distinguish between pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC)) and chronic pancreatitis (CP) in only about two thirds of patients. We have searched for blood-derived metabolite biomarkers for this diagnostic purpose. Design For a case-control study in three tertiary referral centres, 914 subjects were prospectively recruited with PDAC (n=271), CP (n=282), liver cirrhosis (n=100) or healthy as well as non-pancreatic disease controls (n=261) in three consecutive studies. Metabolomic profiles of plasma and serum samples were generated from 477 metabolites identified by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Results A biomarker signature (nine metabolites and additionally CA19-9) was identified for the differential diagnosis between PDAC and CP. The biomarker signature distinguished PDAC from CP in the training set with an area under the curve (AUC) of 0.96 (95% CI 0.93-0.98). The biomarker signature cut-off of 0.384 at 85% fixed specificity showed a sensitivity of 94.9% (95% CI 87.0%-97.0%). In the test set, an AUC of 0.94 (95% CI 0.91-0.97) and, using the same cut-off, a sensitivity of 89.9% (95% CI 81.0%-95.5%) and a specificity of 91.3% (95% CI 82.8%-96.4%) were achieved, successfully validating the biomarker signature. Conclusions In patients with CP with an increased risk for pancreatic cancer (cumulative incidence 1.95%), the performance of this biomarker signature results in a negative predictive value of 99.9% (95% CI 99.7%-99.9%) (training set) and 99.8% (95% CI 99.6%-99.9%) (test set). In one third of our patients, the clinical use of this biomarker signature would have improved diagnosis and treatment stratification in comparison to CA19-9
First results of the air shower experiment KASCADE
The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector)
experiment are the determination of the energy spectrum and elemental
composition of the charged cosmic rays in the energy range around the knee at
ca. 5 PeV. Due to the large number of measured observables per single shower a
variety of different approaches are applied to the data, preferably on an
event-by-event basis. First results are presented and the influence of the
high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings,
Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D.
Vignau
Electron, Muon, and Hadron Lateral Distributions Measured in Air-Showers by the KASCADE Experiment
Measurements of electron, muon, and hadron lateral distributions of extensive
air showers as recorded by the KASCADE experiment are presented. The data cover
the energy range from about 5x10^14 eV up to almost 10^17 eV and extend from
the inner core region to distances of 200 m. The electron and muon
distributions are corrected for mutual contaminations by taking into account
the detector properties in the experiment. All distributions are well described
by NKG-functions. The scale radii describing the electron and hadron data best
are approx. 30 m and 10 m, respectively. We discuss the correlation between
scale radii and `age' parameter as well as their dependence on shower size,
zenith angle, and particle energy threshold.Comment: 28 pages, 14 figures, Accepted for publication in Astroparticle
Physic
Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis
The KASCADE experiment measures extensive air showers induced by cosmic rays
in the energy range around the so-called knee. The data of KASCADE have been
used in a composition analysis showing the knee at 3-5 PeV to be caused by a
steepening in the light-element spectra. Since the applied unfolding analysis
depends crucially on simulations of air showers, different high energy hadronic
interaction models (QGSJet and SIBYLL) were used. The results have shown a
strong dependence of the relative abundance of the individual mass groups on
the underlying model. In this update of the analysis we apply the unfolding
method with a different low energy interaction model (FLUKA instead of GHEISHA)
in the simulations. While the resulting individual mass group spectra do not
change significantly, the overall description of the measured data improves by
using the FLUKA model. In addition data in a larger range of zenith angle are
analysed. The new results are completely consistent, i.e. there is no hint to
any severe problem in applying the unfolding analysis method to KASCADE data.Comment: accepted for publication in Astroparticle Physic
- …