122 research outputs found
Multi MeV protons, deuterons and carbon ions produced by the PALS laser system
Multi MeV ions and fusion neutrons were generated by focused radiation of the 3 TW Prague Asterix Laser System (PALS). The use of 8 μm Al foil as XUV filter positioned in front of an ion collector allowed measuring currents of 4-MeV protons emitted behind a thin target in the forward direction. The proton energy of 4 MeV generated by a PALS laser irradiance Iλ2~5×1016 W cm-2 μm2 on target is nominally reachable for picosecond lasers when they deliver the intensity Iλ2~3×1018 W cm-2 μm2. The enhanced maximum proton energy is favoured by a non-linear interaction of the laser beam with the pre-generated plasma. Nonlinear processes also cause enhancement in the yield of fusion neutrons per focused laser energy from the CD2 plasma. The obtained results show that an equivalent neutron yield was reached by ps- and sub-ps laser beams for Iλ2~1019 W cm-2 μm2. The hampering influence of the electromagnetic pulse generated within the interaction chamber on diagnostics signals was eliminated
Self-focusing effect in Au-target induced by high power pulsed laser at PALS
AbstractSelf-focusing effects, induced by ASTERIX pulsed laser at PALS Laboratory of Prague, have been investigated. Laser was employed at the third harmonics (438 nm) and intensities of the order of 1016 W/cm2. Pure Au was used as thin target and irradiated with 30° incidence angle. An ion energy analyzer was employed to detect the energy-to-mass ratio of emitted ions from plasma. Measurements were performed by changing the focal point position with a high spatial resolution step-motor. Results demonstrated that non linear processes, due to self-focusing effects, occurs when the laser beam is focused at about 200 µm in front of the target surface. In such conditions, a new ion group, having high charge state and kinetic energy, is produced because of the increment in temperature of the laser-generated plasma
Neutron fluences of the D-D fusion reaction at 1016 W/cm2 laser-target interactions
In last decade many studies have been carried on deuterium-deuterium nuclear reaction induced in laser-target interactions. The relationships between neutron yields and reaction mechanisms and laser-target patterns need to be further clarified. In this contribution we investigate on fusion yields by changing the target thickness and composition and the laser energy and focal position. The experiment has been performed at PALS Laboratory in Prague. Ion yields have been measured by a Thomson spectrometer and by SiC detectors placed at suitable distances in TOF configuration. Neutron fluences have been evaluated by neutron bubble dosimeters and CR39 track detectors. Results about neutron fluences and fusion process are presented and discussed
Semiconductor Detectors for Observation of Multi-MeV Protons and Ions Produced by Lasers
The application of time-of-flight Faraday cups and SiC detectors for the measurement of currents of fast ions emitted by laser-produced plasmas is reported. Presented analysis of signals of ion detectors reflects the design and construction of the detector used. A similarity relation between output signals of ion collectors and semiconductor detectors is established. Optimization of the diagnostic system is discussed with respect to the emission time of electromagnetic pulses interfering with signals induced by the fastest ions accelerated up to velocities of 107 m/s. The experimental campaign on laser-driven ion acceleration was performed at the PALS facility in Prague
Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions
Laser-beam interaction with expanding plasma was investigated using
the PALS high-power iodine-laser system. The interaction conditions are
significantly changing with the laser focus spot position. The decisive
role of the laser-beam self-focusing, participating in the production of
ions with the highest charge states, was proved
mev ion beams generated by intense pulsed laser monitored by silicon carbide detectors
The high energy ions produced with intense pulsed laser were analyzed with Silicon Carbide detectors. In order to realize high performances and radiation resistant detectors, high quality and thick epitaxial layer were grown on a substrate and a Schottky diodes were then realized. These detectors were employed to probe the plasma generated with a 300 ps laser at intensity of 1016 W/cm2 operating at Prague Asterix Laser System Laboratory. They show a fast response and a high sensitivity to high energy ions. Metallic and polymeric thin films were irradiated and the produced plasmas were monitored in forward and backward directions. The analysis of the time-of-flight spectra evidences the emission of protons and ions at different energies. The spectra were deconvolved with a shifted Maxwell Boltzmann distribution. In our experimental conditions we detected protons in the energy range 1.2 – 3.0 MeV and heavy ions between 1.0 MeV up to 40 MeV depending on the target and the laser energy. The results were compared with the ones obtained by Thompson Parabola Spectrometer
Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma
AbstractUsing the PALS iodine laser system, Au ions with the charge state up to 58+ and with the kinetic energy as high as ~300 MeV were generated. The production of these ions was tested in dependence on the laser frequency (1ω, 3ω), on the irradiation/detection angles (0°, 30°), on the focus position with regard to the target surface, and on the target thickness (500 µm, 200 µm, 80 µm). A larger amount of the fastest ions was produced with 1ω than with 3ω, the most of the fast ions were recorded in the direction ~10°from the target normal, the optimum focus position is in front of the target and should be set on with a precision of 50 µm. The forward emission is weaker than the backward one for both of the thinner targets (which burn through) at our experimental conditions
Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities
AbstractAngular distributions of currents and velocities (energies) of ions produced at various target irradiation angles and laser intensities ranged from 1010 W/cm2 to 1017 W/cm2 were analyzed. It was confirmed that for low laser intensities the ion current distributions are always peaked along the target normal. However, at laser intensities comparable to or higher than 1014 W/cm2, the preferred direction of ion emission strongly depends on the irradiation geometry (laser focus setting, the irradiation angle), and can be off the target normal. This is very likely caused by the non-linear interaction of the laser beam with produced plasma, in particular, by the action of ponderomotive forces and the laser beam self-focusing
Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition
We present experimental results at intensities relevant to Shock Ignition
obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves
produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at
1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and
a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets
composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics)
and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl
to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and
spectral properties of the fast electrons and a streak camera for shock breakout measurements.
Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and
Two Plasmon Decay) were studied by collecting the back scattered light and analysing its
spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum
pressure reached in our experiment we performed hydro simulations with CHIC and DUED
codes. The maximum shock pressure generated in our experiment at the front side of the
target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was
estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio
- …