173 research outputs found
Product Tests in Virtual Reality: Lessons Learned during Collision Avoidance Development for Drones
Virtual reality (VR) and real-world simulations have become an important tool for product development, product design, and product tests. Product tests in VR have many advantages, such as reproducibility and shortened development time. In this paper, we investigate the virtual testing of a collision avoidance system for drones in terms of economic benefits. Our results show that virtual tests had both positive and negative effects on the development, with the positive aspects clearly predominating. In summary, the tests in VR shorten the development time and reduce risks and therefore costs. Furthermore, they offer possibilities not available in real-world tests. Nevertheless, real-world tests are still important
Π€ΡΠ·ΠΈΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ ΠΌΠ°Π³Π½ΡΡΠ½ΠΈΡ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΠ½ΠΎΠΊ ΡΠΏΡΠΎΠ²ΡΠ΄Π½ΡΠΉ ΠΌΠ°ΡΡΠΈΡΡ
ΠΠΈΡΠ΅ΡΡΠ°ΡΡΡ ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΌΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΌΠ°Π³Π½ΡΡΠΎΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΠΈΡ
Ρ ΠΎΠΏΡΠΈΡΠ½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΡΠ° Π³Π°Π·ΠΎΠ²ΠΎΡ ΡΡΡΠ»ΠΈΠ²ΠΎΡΡΡ ΠΏΡΠΈΠ»Π°Π΄ΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠ°ΡΠΈΠ²ΡΠ² ΠΌΠ°Π³Π½ΡΡΠ½ΠΈΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΠ½ΠΎΠΊ (ΠΠ§) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 Ρ ΠΏΡΠΎΠ²ΡΠ΄Π½ΡΠΉ Π½Π΅ΠΌΠ°Π³Π½ΡΡΠ½ΡΠΉ ΠΌΠ°ΡΡΠΈΡΡ Ag Π°Π±ΠΎ ΠΌΡΠ»ΡΡΠΈΡΠ°ΡΠΎΠ²ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠ΅Π½Ρ. Π£ ΡΠΎΠ±ΠΎΡΡ ΠΏΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π·Π²'ΡΠ·ΠΎΠΊ ΠΌΡΠΆ ΡΡΡΡΠΊΡΡΡΠ½ΠΈΠΌ ΡΡΠ°Π½ΠΎΠΌ ΠΠ§ Ρ ΠΌΠ°Π³Π½ΡΡΠΎΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΠΈΠΌΠΈ, ΠΌΠ°Π³Π½ΡΡΠΎΠΎΠΏΡΠΈΡΠ½ΠΈΠΌΠΈ
ΡΠ° ΠΎΠΏΡΠΈΡΠ½ΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ Π½Π°Π½ΠΎΠΏΡΠΈΠ»Π°Π΄ΠΎΠ²ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΌΠ΅Ρ
Π°Π½ΡΠ·ΠΌΠΈ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ ΠΌΠ°ΡΠΈΠ²ΡΠ² ΡΠΏΡΠ½-Π²Π΅Π½ΡΠΈΠ»ΡΠ½ΠΈΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΡΠ² ΠΏΡΠΈ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ ΡΠΎΠ²ΡΠΈΠ½ΠΈ ΠΏΡΠΎΠ²ΡΠ΄Π½ΠΎΡ ΠΌΠ°ΡΡΠΈΡΡ Ag Π²ΡΠ΄ 5 Π΄ΠΎ 20 Π½ΠΌ Ρ ΡΠΌΠΎΠ² ΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ (Π’Π² = 600 Π) ΡΠ° ΡΡ
Π²Π½Π΅ΡΠΎΠΊ Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΌΠ°Π³Π½ΡΡΠΎΠΎΠΏΠΎΡΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ Π²ΠΈΠ²ΡΠ΅Π½ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ Π·ΠΌΡΠ½ΠΈ Π΅Π»Π΅ΠΊΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΠΎΡΡ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠΎΠ²Π°Π½ΠΈΡ
ΡΠ°ΡΡΠ² Π²ΡΠ΄ ΡΠΌΠΎΠ² ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΡ
ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ (Π’Π² = 1100 Π) ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Π΄Π΅ΠΊΠΎΡΡΠ²Π°Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ
ΠΌΡΠ»ΡΡΠΈΡΠ°ΡΠΎΠ²ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠ΅Π½Ρ ΠΌΠ°ΡΠΈΠ²Π°ΠΌΠΈ ΠΠ§ NiFe2O4 Π΄Π»Ρ ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π½Ρ ΡΡΡΠ»ΠΈΠ²ΠΎΡΡΡ Π΄ΠΎ ΡΠΊΡΠ΄Π»ΠΈΠ²ΠΎΠ³ΠΎ Π³Π°Π·Ρ NO2 Π½Π° 40 %. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΠΌΠΎΠΆΡΡΡ Π±ΡΡΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Ρ ΡΠΊ ΠΏΡΠ°ΠΊΡΠΈΡΠ½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΡΡ ΠΏΡΠΈ ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²Ρ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠΎΠ²Π°Π½ΠΈΡ
ΡΡΡΠ»ΠΈΠ²ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π΄Π°ΡΡΠΈΠΊΡΠ² ΡΡΠ·Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ.ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°Π³Π½ΠΈΡΠΎΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΡΡ
ΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ², Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ±ΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ (ΠΠ§) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ Π½Π΅ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ Ag ΠΈΠ»ΠΈ ΠΌΡΠ»ΡΡΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠ΅Π½Π° (ΠΠ‘Π). Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π²ΡΡ
ΠΌΠ΅ΡΠ½ΡΡ
Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡ ΠΈΠ· Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΈ ΠΌΡΠ»ΡΡΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠ΅Π½Π° Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ
SiO2 (500 Π½ΠΌ) / Si (001) Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠΏΠΈΠ½-ΠΊΠΎΠ°ΡΠΈΠ½Π³Π° ΠΈ ΠΠ΅Π½Π³ΠΌΡΡΠ° β ΠΠ»ΠΎΠ΄ΠΆΠ΅ΡΡ.
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΡΡΠΊΡΡΡΠ½ΡΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΠΠ§ ΠΈ
ΠΌΠ°Π³Π½ΠΈΡΠΎΡΠ΅Π·ΠΈΡΡΠΈΠ²Π½ΡΠΌΠΈ, ΠΌΠ°Π³Π½ΠΈΡΠΎΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ Π½Π°Π½ΠΎΠΏΡΠΈΠ±ΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΎΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ ΠΈΠ»ΠΈ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ‘Π Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² ΡΠΏΠΈΠ½-Π²Π΅Π½ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΡΠΎΠ»ΡΠΈΠ½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ ΠΌΠ°ΡΡΠΈΡΡ Ag ΠΎΡ 5 Π΄ΠΎ 20 Π½ΠΌ ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π΅Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ (Π’ΠΎ = 600 Π) ΠΈ ΠΈΡ
Π²ΠΊΠ»Π°Π΄ Π² Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΌΠ°Π³Π½ΠΈΡΠΎΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ°Ρ ΠΎΡΠ΅Π½ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π²ΠΊΠ»Π°Π΄Π° ΡΠ°ΡΡΠ΅ΠΈΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π½Π° ΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡΠ°Ρ
Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ
ΠΌΠ°ΡΡΠΈΡΠ΅ Ag Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ Π΅Ρ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ (Π’ΠΎ = 600 Π). ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΈΠ·ΡΡΠ΅Π½ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΎΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ (Π’ΠΎ = 1100 Π) ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π΄Π΅ΠΊΠΎΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΌΡΠ»ΡΡΠΈΡΠ»ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠ΅Π½Π° ΠΌΠ°ΡΡΠΈΠ²Π°ΠΌΠΈ Π½Π°Π½ΠΎΡΠ°ΡΡΠΈΡ NiFe2O4 Π΄Π»Ρ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΊ
Π²ΡΠ΅Π΄Π½ΠΎΠΌΡ Π³Π°Π·Ρ NO2 Π½Π° 40 %, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΡΠΈΠ±ΠΎΡΠ½ΡΡ
ΡΡΡΡΠΊΡΡΡ ΠΈ Π³Π°Π·Π° NO2. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ (Π’ΠΎ = 1100 Π) Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΠ‘Π ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΡΠΎΠ²Π½Π΅ΠΌ ΡΡΠΌΠ°.
ΠΠ·ΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΠ‘Π Π½Π° Π³Π°Π·ΠΎΠ²ΡΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π°ΡΡΠΈΠΊΠΎΠ² Π½Π° ΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π΅. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΊΠ°ΠΊ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π°ΡΡΠΈΠΊΠΎΠ² ΡΠ°Π·Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ.The thesis is devoted to the complex investigation of magnetoresistive and optical properties and sensitivity to gases of instrumentation systems based on arrays of nanoparticles (NP) NiFe2O4, Π‘ΠΎFe2O4, Fe3O4 in Ag conductive matrix or multilayered graphene. In this work an interconnection between the structural features of the NP and magnetoresistive, magnetooptical and optical properties of
instrumentation systems was analyzed. The mechanisms of formation of arrays of spin-valve junctions while increasing the thickness of Ag conductive matrix from 5 to 20 nm, conditions of it temperature treatment and their influence on the value of magnetoresistance were established. Electrical resistance changes of nanostructured layers depends on conditions of thermal treatment (Tt = 1100 K) were experimentally
studied and an effect of decoration of multilayered graphene by arrays of NiFe2O4 NPs for increasing of sensitivity to NO2 gas by 40% was investigated. The results of research can be utilized as practical recommendation while develop the nanostructured
sensitive elements of the sensors with different functional purposes
Recovery of reduced thiol groups by superoxide-mediated denitrosation of nitrosothiols
Nitrosation of critical thiols has been elaborated as reversible posttranslational modification with regulatory function in multiple disorders. Reversibility of S-nitrosation is generally associated with enzyme-mediated one-electron reductions, catalyzed by the thioredoxin system, or by nitrosoglutathione reductase.
In the present study, we confirm previous evidence for a non-enzymatic de-nitrosation of nitrosoglutathione (GSNO) by superoxide. The interaction leads to the release of nitric oxide that subsequently interacts with a second molecule of superoxide (O2β’β) to form peroxynitrite. Despite the formation of peroxynitrite, approximately 40β70% of GSNO yielded reduced glutathione (GSH), depending on the applied analytical assay. The concept of O2β’β dependent denitrosation was then applied to S-nitrosated enzymes. S-nitrosation of isocitrate dehydrogenase (ICDH; NADP+-dependent) was accompanied by an inhibition of the enzyme and could be reversed by dithiothreitol. Treatment of nitrosated ICDH with O2β’β indicated ca. 50% recovery of enzyme activity. Remaining inhibition was largely consequence of oxidative modifications evoked either by O2β’β or by peroxynitrite. Recovery of activity in S-nitrosated enzymes by O2β’β appears relevant only for selected examples. In contrast, recovery of reduced glutathione from the interaction of GSNO with O2β’β could represent a mechanism to regain reducing equivalents in situations of excess O2β’β formation, e.g. in the reperfusion phase after ischemia
Expression of human thromboxane synthase using a baculovirus system
AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 ΞΌM)
Expression of human thromboxane synthase using a baculovirus system
AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 ΞΌM)
An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants
The oxidation of guanine to 8-oxo-2β²-deoxyguanosine (8-oxo-dG) is one of the most abundant and best studied oxidative DNA lesions and is commonly used as a biomarker for oxidative stress. Over the last decades, various methods for the detection of DNA oxidation products have been established and optimized. However, some of them lack sensitivity or are prone to artifact formation, while others are time-consuming, which hampers their application in screening approaches. In this study, we present a formamidopyrimidine glycosylase (Fpg)-based method to detect oxidative lesions in isolated DNA using a modified protocol of the automated version of the fluorimetric detection of alkaline DNA unwinding (FADU) method, initially developed for the measurement of DNA strand breaks (Moreno-Villanueva et al., 2009. BMC Biotechnol. 9, 39). The FADU-Fpg method was validated using a plasmid DNA model, mimicking mitochondrial DNA, and the results were correlated to 8-oxo-dG levels as measured by LCβMS/MS. The FADU-Fpg method can be applied to analyze the potential of compounds to induce DNA strand breaks and oxidative lesions, as exemplified here by treating plasmid DNA with the peroxynitrite-generating molecule Sin-1. Moreover, this method can be used to screen DNA-protective effects of antioxidant substances, as exemplified here for a small-molecule, i.e., uric acid, and a protein, i.e., manganese superoxide dismutase, both of which displayed a dose-dependent protection against the generation of oxidative DNA lesions. In conclusion, the automated FADU-Fpg method offers a rapid and reliable measurement for the detection of peroxynitrite-mediated DNA damage in a cell-free system, rendering it an ideal method for screening the DNA-protective effects of antioxidant compounds.Deutsche Forschungsgemeinschaft (Grant BU 698/6-1)National Institutes of Health (U.S.) (Grant ES002109)National Institutes of Health (U.S.) (Grant CA026731
- β¦