5,769 research outputs found
Inelastic collisions of relativistic electrons with atomic targets assisted by a laser field
We consider inelastic collisions between relativistic electrons and atomic
targets assisted by a low-frequency laser field in the case when this field is
still much weaker than the typical internal fields in the target. Concentrating
on target transitions we show that they can be substantially affected by the
presence of the laser field. This may occur either via strong modifications in
the motion of the relativistic electrons caused by the electron-laser
interaction or via the Compton effect when the incident electrons convert laser
photon(s) into photons with frequencies equal to target transition frequencies.Comment: 4 pages, 2 figure
Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear
Of all current detection techniques with nanometer resolution, only X-ray
microscopy allows imaging nanoparticles in suspension. Can it also be used to
investigate structural dynamics? When studying response to mechanical stimuli,
the challenge lies in applying them with precision comparable to spatial
resolution. In the first shear experiments performed in an X-ray microscope, we
accomplished this by inserting a piezo actuator driven shear cell into the
focal plane of a scanning transmission X-ray microscope (STXM). Thus
shear-induced reorganization of magnetite nanoparticle aggregates could be
demonstrated in suspension. As X-ray microscopy proves suitable for studying
structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia
Differential cross sections for K-shell ionization by electron or positron impact
We have investigated the universal scaling behavior of differential cross
sections for the single K-shell ionization by electron or positron impact. The
study is performed within the framework of non-relativistic perturbation
theory, taking into account the one-photon exchange diagrams. In the case of
low-energy positron scattering, the doubly differential cross section exhibits
prominent interference oscillations. The results obtained are valid for
arbitrary atomic targets with moderate values of nuclear charge number Z.Comment: 13 pages, 7 figure
Semiclassical description of the kinematically complete experiments
Based on the semiclassical, impact parameter method a theoretical model is
constructed to calculate totally differential cross sections for single
ionization of helium by impact with fast C ions. Good agreement with the
experiment is achieved in the scattering plane, while in the perpendicular
plane a similar structure to that observed experimentally is obtained. The
contribution of different partial waves to the cross section is also
investigated.Comment: 9 pages, 6 figure
Magnetic-dipole transition probabilities in B-like and Be-like ions
The magnetic-dipole transition probabilities between the fine-structure
levels (1s^2 2s^2 2p) ^2P_1/2 - ^2P_3/2 for B-like ions and (1s^2 2s 2p) ^3P_1
- ^3P_2 for Be-like ions are calculated. The configuration-interaction method
in the Dirac-Fock-Sturm basis is employed for the evaluation of the
interelectronic-interaction correction with negative-continuum spectrum being
taken into account. The 1/Z interelectronic-interaction contribution is derived
within a rigorous QED approach employing the two-time Green function method.
The one-electron QED correction is evaluated within framework of the anomalous
magnetic-moment approximation. A comparison with the theoretical results of
other authors and with available experimental data is presented
Imaging Molecules from Within: Ultra-fast, {\AA}ngstr\"om Scale Structure Determination of Molecules via Photoelectron Holography using Free Electron Lasers
A new scheme based on (i) upcoming brilliant X-ray Free Electron Laser (FEL)
sources, (ii) novel energy and angular dispersive, large-area electron imagers
and (iii) the well-known photoelectron holography is elaborated that provides
time-dependent three-dimensional structure determination of small to medium
sized molecules with {\AA}ngstr\"om spatial and femtosecond time resolution.
Inducing molecular dynamics, wave-packet motion, dissociation, passage through
conical intersections or isomerization by a pump pulse this motion is
visualized by the X-ray FEL probe pulse launching keV photoelectrons within few
femtoseconds from specific and well-defined sites, deep core levels of
individual atoms, inside the molecule. On their way out the photoelectrons are
diffracted generating a hologram on the detector that encodes the molecular
structure at the instant of photoionization, thus providing 'femtosecond
snapshot images of the molecule from within'. Detailed calculations in various
approximations of increasing sophistication are presented and three-dimensional
retrieval of the spatial structure of the molecule with {\AA}ngstr\"om spatial
resolution is demonstrated. Due to the large photo-absorption cross sections
the method extends X-ray diffraction based, time-dependent structure
investigations envisioned at FELs to new classes of samples that are not
accessible by any other method. Among them are dilute samples in the gas phase
such as aligned, oriented or conformer selected molecules, ultra-cold ensembles
and/or molecular or cluster objects containing mainly light atoms that do not
scatter X-rays efficiently.Comment: 18 pages, 11 figure
Momentum space tomographic imaging of photoelectrons
We apply tomography, a general method for reconstructing 3-D distributions
from multiple projections, to reconstruct the momentum distribution of
electrons produced via strong field photoionization. The projections are
obtained by rotating the electron distribution via the polarization of the
ionizing laser beam and recording a momentum spectrum at each angle with a 2-D
velocity map imaging spectrometer. For linearly polarized light the tomographic
reconstruction agrees with the distribution obtained using an Abel inversion.
Electron tomography, which can be applied to any polarization, will simplify
the technology of electron imaging. The method can be directly generalized to
other charged particles.Comment: Accepted by J. Phys.
Fully Differential Cross Sections for the Single Ionization of Helium by Ion Impact
We present experimental and theoretical fully differential cross sections for the single ionization of He by heavy-ion impact for electrons emitted into the scattering plane. Data were obtained for 2 MeV amu-1 C6+ and 3.6 MeV amu-1 AuQ+ (Q = 24, 53) projectiles, corresponding to perturbations (projectile charge to velocity ratio) ranging from 0.7 to 4.4, a regime which is inaccessible for electron-impact ionization. We observe a decreasing recoil peak intensity (relative to the binary peak) and at the same time an increasing peak in the forward direction with increasing perturbations. Large discrepancies between the experimental data and theoretical predictions are found, which can at least be partly attributed to the use of hydrogenic wavefunction
Decay rate measurement of the first vibrationally excited state of MgH in a cryogenic Paul trap
We present a method to measure the decay rate of the first excited
vibrational state of simple polar molecular ions being part of a Coulomb
crystal in a cryogenic linear Paul trap. Specifically, we have monitored the
decay of the == towards the ==
level in MgH by saturated laser excitation of the ==-== transition followed by state selective
resonance enhanced two-photon dissociation out of the == level. The technique enables the determination of decay rates, and
thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure
- âŠ