6 research outputs found

    Identification of two novel zinc finger modules and nuclear localization signal in rat spermatidal protein TP2 by site-directed mutagenesis

    Get PDF
    Spermatidal protein TP2, which appears transiently during stages 12-16 of mammalian spermiogenesis, is a DNA condensing zinc metalloprotein with a preference to GC-rich DNA. We have carried out a detailed site-directed mutagenesis analysis of rat spermatidal protein TP2 to delineate the amino acid residues involved in coordination with two atoms of zinc. Two zinc fingers modules have been identified involving 4 histidine and 4 cysteine residues, respectively. The modular structure of the two zinc fingers identified in TP2 define a new class of zinc finger proteins that do not fall into any of the known classes of zinc fingers. Transfection experiments with COS-7 cells using wild type and the two zinc finger pocket mutants have shown that TP2 preferentially localizes to nucleolus. The nuclear localization signal in TP2 was identified to be 87GKVSKRKAV95 present in the C-terminal third of TP2 as a part of an extended NoLS sequence

    Identification of Two Novel Zinc Finger Modules and Nuclear Localization Signal in Rat Spermatidal Protein TP2 by Site-directed Mutagenesis

    No full text
    Spermatidal protein TP2, which appears transiently during stages 12-16 of mammalian spermiogenesis, is a DNA condensing zinc metalloprotein with a preference to GC-rich DNA. We have carried out a detailed site-directed mutagenesis analysis of rat spermatidal protein TP2 to delineate the amino acid residues involved in coordination with two atoms of zinc. Two zinc fingers modules have been identified involving 4 histidine and 4 cysteine residues, respectively. The modular structure of the two zinc fingers identified in TP2 define a new class of zinc finger proteins that do not fall into any of the known classes of zinc fingers. Transfection experiments with COS-7 cells using wild type and the two zinc finger pocket mutants have shown that TP2 preferentially localizes to nucleolus. The nuclear localization signal in TP2 was identified to be 87GKVSKRKAV95^{87}GKVSKRKAV^{95} present in the C-terminal third of TP2 as a part of an extended NoLS sequence

    Involvement of Protein Kinase A in the Phosphorylation of Spermatidal Protein TP2 and Its Effect on DNA Condensation

    No full text
    Rat spermatidal protein TP2 is rich in serine residues and has several potential sites for phosphorylation by different protein kinases. Recombinant TP2 is phosphorylated upon incubation in vitro with salt extract of testicular sonication resistant nuclei (SRN) (representing elongating and elongated spermatids). The major phosphorylation sites were localized to the C-terminal, V8 protease-derived, fragment (residues 87-114). Phosphorylation experiments with the wild type and different site-specific mutants of TP2 revealed that serine 109 and threonine 101 are the phosphorylation sites. Phosphorylation of the C-terminal fragment of TP2 was also demonstrated in vivo. Phosphorylation was not stimulated by either protein kinase C activators or cGMP but was inhibited by protein kinase A inhibitor (PKI) peptide, showing the involvement of protein kinase A in the phosphorylation of TP2. Phosphorylation of TP2 greatly reduced its DNA condensation property. TP2 when complexed with DNA was not a good substrate for phosphorylation by PKA. Dephosphorylation of the DNA-TP2 complex by calf intestinal alkaline phosphatase restored the DNA condensation property to a level equivalent to that observed with TP2. The physiological significance of the phosphorylation-dephosphorylation cycle is discussed with reference to the two-domain model of TP2

    Embryo culture-based generation of enhanced green fluorescent protein-transgenic mice

    No full text
    One of the limitations of transgenesis is low efficiency. In this study, we generated transgenic mice harboring the enhanced green fluorescent protein (EGFP) gene, under the control of chicken-β-actin promoter and cytomegalovirus enhancer, using two approaches and compared their efficiencies. One involved culture of EGFP-injected embryos developing through EGFP-expressing "green" blastocysts, followed by their transfer to uterus. The second was oviductal-transfer of EGFP-injected-eggs. Embryo culture-based-transgenesis (ECBT) produced 100% transgenic mice, unlike the second approach. Moreover, ECBT required reduced number of recipients and markedly increased pregnancy rates. Of the nine founders, seven exhibited ubiquitous EGFP-expression, one (GU1) was a mosaic and the other (G18) was non-expressing. The molecular basis for this was attributed to repeat-induced gene silencing, since the G18 had a high copy number (⋍99/genome) of the non-mutated and non-rearranged EGFP-transgene integrated at a single site. Our results show the superiority of ECBT over the conventional oviductal approach for generating transgenic "green" mice

    Embryo culture-based generation of enhanced green fluorescent protein-transgenic mice

    No full text
    One of the limitations of transgenesis is low efficiency. In this study, we generated transgenic mice harboring the enhanced green fluorescent protein (EGFP) gene, under the control of chicken-β-actin promoter and cytomegalovirus enhancer, using two approaches and compared their efficiencies. One involved culture of EGFP-injected embryos developing through EGFP-expressing “green” blastocysts, followed by their transfer to uterus. The second was oviductal-transfer of EGFP-injected-eggs. Embryo culture-based-transgenesis (ECBT) produced 100% transgenic mice, unlike the second approach. Moreover, ECBT required reduced number of recipients and markedly increased pregnancy rates. Of the nine founders, seven exhibited ubiquitous EGFP-expression, one (GU1) was a mosaic and the other (G18) was non-expressing. The molecular basis for this was attributed to repeat-induced gene silencing, since the G18 had a high copy number ( 99/genome) of the non-mutated and non-rearranged EGFP-transgene integrated at a single site. Our results show the superiority of ECBT over the conventional oviductal approach for generating transgenic “green” mice
    corecore