2 research outputs found

    Elevated Lipoprotein(a) Level Influences Familial Hypercholesterolemia Diagnosis

    No full text
    Familial hypercholesterolemia (FH) and elevated lipoprotein(a) [Lp(a)] level are the most common inherited disorders of lipid metabolism. This study evaluated the impact of high Lp(a) level on accuracy Dutch Lipid Clinic Network (DLCN) criteria of heterozygous FH diagnosis. A group of 206 individuals not receiving lipid-lowering medication with low-density lipoprotein cholesterol (LDL-C) >4.9 mmol/L was chosen from the Russian FH Registry. LDL-C corrected for Lp(a)-cholesterol was calculated as LDL-C − 0.3 × Lp(a). DLCN criteria were applied before and after adjusting LDL-C concentration. Of the 206 patients with potential FH, a total of 34 subjects (17%) were reclassified to less severe FH diagnosis, 13 subjects of them (6%) were reclassified to “unlike” FH. In accordance with Receiver Operating Characteristic curve, Lp(a) level ≥40 mg/dL was associated with FH re-diagnosing with sensitivity of 63% and specificity of 78% (area under curve = 0.7, 95% CI 0.7–0.8, p < 0.001). The reclassification was mainly observed in FH patients with Lp(a) level above 40 mg/dL, i.e., 33 (51%) with reclassified DLCN criteria points and 22 (34%) with reclassified diagnosis, compared with 21 (15%) and 15 (11%), respectively, in patients with Lp(a) level less than 40 mg/dL. Thus, LDL-C corrected for Lp(a)-cholesterol should be considered in all FH patients with Lp(a) level above 40 mg/dL for recalculating points in accordance with DLCN criteria

    A Clinical Case of a Homozygous Deletion in the <i>APOA5</i> Gene with Severe Hypertriglyceridemia

    No full text
    Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes. Case: We present a clinical case of severe primary hypertriglyceridemia (TG level > 55 mmol/L in a 4-year-old boy) in a consanguineous family. The disease developed due to a previously undescribed homozygous deletion in the APOA5 gene (NM_052968: c.579_592delATACGCCGAGAGCC p.Tyr194Gly*68). We also evaluate the clinical significance of a genetic variant in the LPL gene (NM_000237.2: c.106G>A (rs1801177) p.Asp36Asn), which was previously described as a polymorphism. In one family, we also present a different clinical significance even in heterozygous carriers: from hypertriglyceridemia to normotriglyceridemia. We provide evidence that this heterogeneity has developed due to polymorphism in the LPL gene, which plays the role of an additional trigger. Conclusions: The homozygous deletion of the APOA5 gene is responsible for the severe hypertriglyceridemia, and another SNP in the LPL gene worsens the course of the disease
    corecore