4 research outputs found

    Impact of Process Parameters on the Diameter of Nanobubbles Generated by Electrolysis on Platinum-Coated Titanium Electrodes Using Box–Behnken Experimental Design

    No full text
    (1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted

    Sterilisation of nanobubble dispersions

    No full text
    In this paper, three methods of sterilisation are compared to determine their usability in nanobubbledispersion sterilisation: filtration, thermal sterilisation and sonication (in twosystems: using a sonotrodeand sonication bath). Nanobubble dispersions are most commonly generated in non-sterile systemswhich precludes them from use in most biological research. As a result of this study, filtration waschosen as the best method for nanobubble sterilisation

    The Pursuit of Energy Reduction in Generation of Stable Nanobubbles

    No full text
    The repeatable and cost-efficient generation of nanobubbles is still a challenge. In most cases, the hydrodynamic generation of nanobubbles is used at larger scales. Therefore, every cost reduction possible in nanobubble generation is needed. In this work, we decided to check how the generation of nanobubbles changes when the surrounding liquid properties change. The generation of nanobubbles was carried out in a novel setup, designed by us. We investigated the minimum liquid velocity needed for nanobubble generation and propose correlations describing this based on the physicochemical properties of the liquid and gas phases. As carbon dioxide nanobubbles are commonly used for the treatment of ischemia and chronic wounds, the investigation of their stability enhancement is crucial for the wider public. We investigated the minimum rotation rate of the impeller needed for CO2 nanobubble generation and the influence of a biomedical surfactant (Pluronic P-123) addition and concentration change on the size of nanobubbles and their stability over time. Nanobubbles were stable in the presence of surfactant additions and showed the impact of both changes in generation time and shear stress on their size. We hope that this study will be a step in the direction of the cost-efficient generation of stable carbon dioxide nanobubble dispersions

    Interactions between O2 Nanobubbles and the Pulmonary Surfactant in the Presence of Inhalation Medicines

    No full text
    A dispersion of oxygen nanobubbles (O2-NBs) is an extraordinary gas–liquid colloidal system where spherical gas elements can be considered oxygen transport agents. Its conversion into inhalation aerosol by atomization with the use of nebulizers, while maintaining the properties of the dispersion, gives new opportunities for its applications and may be attractive as a new concept in treating lung diseases. The screening of O2-NBs interactions with lung fluids is particularly needed in view of an O2-NBs application as a promising aerosol drug carrier with the additional function of oxygen supplementation. The aim of the presented studies was to investigate the influence of O2-NBs dispersion combined with the selected inhalation drugs on the surface properties of two types of pulmonary surfactant models (lipid and lipid–protein model). The characteristics of the air–liquid interface were carried out under breathing-like conditions using two selected tensiometer systems: Langmuir–Wilhelmy trough and the oscillating droplet tensiometer. The results indicate that the presence of NBs has a minor effect on the dynamic characteristics of the air–liquid interface, which is the desired effect in the context of a potential use in inhalation therapies
    corecore