6 research outputs found

    Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    Get PDF
    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed

    Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection

    No full text
    Abstract Background Due to the rising use of nanomaterials (NMs), there is concern that NMs induce undesirable biological effects because of their unique physicochemical properties. Recently, we reported that amorphous silica nanoparticles (nSPs), which are one of the most widely used NMs, can penetrate the skin barrier and induce various biological effects, including an immune-modulating effect. Thus, it should be clarified whether nSPs can be a risk factor for the aggravation of skin immune diseases. Thus, in this study, we investigated the relationship between the size of SPs and adjuvant activity using a model for atopic dermatitis. Results We investigated the effects of nSPs on the AD induced by intradermaly injected-mite antigen Dermatophagoides pteronyssinus (Dp) in NC/Nga mice. Ear thickness measurements and histopathological analysis revealed that a combined injection of amorphous silica particles (SPs) and Dp induced aggravation of AD in an SP size-dependent manner compared to that of Dp alone. In particular, aggravation was observed remarkably in nSP-injected groups. Furthermore, these effects were correlated with the excessive induction of total IgE and a stronger systemic Th2 response. We demonstrated that these results are associated with the induction of IL-18 and thymic stromal lymphopoietin (TSLP) in the skin lesions. Conclusions A particle size reduction in silica particles enhanced IL-18 and TSLP production, which leads to systemic Th2 response and aggravation of AD-like skin lesions as induced by Dp antigen treatment. We believe that appropriate regulation of nanoparticle physicochemical properties, including sizes, is a critical determinant for the design of safer forms of NMs.</p

    Effect of amorphous silica nanoparticles on <it>in vitro </it>RANKL-induced osteoclast differentiation in murine macrophages

    No full text
    <p>Abstract</p> <p>Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor &#954;B ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed.</p
    corecore