16 research outputs found
Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments
The conformational elasticity of the actin cytoskeleton is
essential for its versatile biological functions. Increasing
evidence supports that the interplay between the structural and
functional properties of actin filaments is finely regulated by
actin-binding proteins, however, the underlying mechanisms and
biological consequences are not completely understood. Previous
studies showed that the binding of formins to the barbed end
induces conformational transitions in actin filaments by making
them more flexible through long-range allosteric interactions.
These conformational changes are accompanied by altered
functional properties of the filaments. To get insight into the
conformational regulation of formin-nucleated actin structures,
in the present work we investigated in detail how binding
partners of formin-generated actin structures, myosin and
tropomyosin, affect the conformation of the formin-nucleated
actin filaments, using fluorescence spectroscopic approaches.
Time-dependent fluorescence anisotropy and temperature-dependent
Forster-type resonance energy transfer measurements revealed
that heavy meromyosin, similarly to tropomyosin, restores the
formin-induced effects and stabilizes the conformation of actin
filaments. The stabilizing effect of heavy meromyosin is
cooperative. The kinetic analysis revealed that despite the
qualitatively similar effects of heavy meromyosin and
tropomyosin on the conformational dynamics of actin filaments,
the mechanisms of the conformational transition is different for
the two proteins. Heavy meromyosin stabilizes the formin-
nucleated actin filaments in an apparently single-step reaction
upon binding, while the stabilization by tropomyosin occurs
after complex formation. These observations support the idea
that actin-binding proteins are key elements of the molecular
mechanisms that regulate the conformational and functional
diversity of actin filaments in living cells
Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms
© 2017 Biophysical Society Modeling the complete actin.myosin ATPase cycle has always been limited by the lack of experimental data concerning key steps of the cycle, because these steps can only be defined at very low ionic strength. Here, using human β-cardiac myosin-S1, we combine published data from transient and steady-state kinetics to model a minimal eight-state ATPase cycle. The model illustrates the occupancy of each intermediate around the cycle and how the occupancy is altered by changes in actin concentration for [actin] = 1–20Km. The cycle can be used to predict the maximal velocity of contraction (by motility assay or sarcomeric shortening) at different actin concentrations (which is consistent with experimental velocity data) and predict the effect of a 5 pN load on a single motor. The same exercise was repeated for human α-cardiac myosin S1 and rabbit fast skeletal muscle S1. The data illustrates how the motor domain properties can alter the ATPase cycle and hence the occupancy of the key states in the cycle. These in turn alter the predicted mechanical response of the myosin independent of other factors present in a sarcomere, such as filament stiffness and regulatory proteins. We also explore the potential of this modeling approach for the study of mutations in human β-cardiac myosin using the hypertrophic myopathy mutation R453C. Our modeling, using the transient kinetic data, predicts mechanical properties of the motor that are compatible with the single-molecule study. The modeling approach may therefore be of wide use for predicting the properties of myosin mutations
Dilated cardiomyopathy myosin mutants have reduced force-generating capacity
© 2018 Ujfalusi et al. Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human -cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding AMD complex in the steady state. Under load, the AMD state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state
ATP-dependent conformational dynamics in a photoactivated adenylate cyclase revealed by fluorescence spectroscopy and small-angle X-ray scattering
International audienceAbstract Structural insights into the photoactivated adenylate cyclases can be used to develop new ways of controlling cellular cyclic adenosine monophosphate (cAMP) levels for optogenetic and other applications. In this work, we use an integrative approach that combines biophysical and structural biology methods to provide insight on the interaction of adenosine triphosphate (ATP) with the dark-adapted state of the photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata (OaPAC). A moderate affinity of the nucleotide for the enzyme was calculated and the thermodynamic parameters of the interaction have been obtained. Stopped-flow fluorescence spectroscopy and small-angle solution scattering have revealed significant conformational changes in the enzyme, presumably in the adenylate cyclase (AC) domain during the allosteric mechanism of ATP binding to OaPAC with small and large-scale movements observed to the best of our knowledge for the first time in the enzyme in solution upon ATP binding. These results are in line with previously reported drastic conformational changes taking place in several class III AC domains upon nucleotide binding