27 research outputs found

    From ARB to ARNI in Cardiovascular Control

    Get PDF
    Coexistence of hypertension, diabetes mellitus and chronic kidney disease synergistically aggravates the risk of cardiovascular and renal morbidity and mortality. These high-risk, multi-morbid patient populations benefit less from currently available anti-hypertensive treatment. Simultaneous angiotensin II type 1 receptor blockade and neprilysin inhibition (‘ARNI’) with valsartan/sacubitril (LCZ696) might potentiate the beneficial effects of renin-angiotensin-aldosterone inhibition by reinforcing its endogenous counterbalance, the natriuretic peptide system. This review discusses effects obtained with this approach in animals and humans. In animal models of hypertension, either alone or in combination with myocardial infarction or diabetes, ARNI consistently reduced heart weight and cardiac fibrosis in a blood pressure-independent manner. Additionally, LCZ696 treatment reduced proteinuria, focal segmental glomerulosclerosis and retinopathy, thus simultaneously demonstrating favourable effects on microvascular complications. These results were confirmed in patient populations. Besides blood pressure reductions in hypertensive patients and greatly improved (cardiovascular) mortality in heart failure patients, ventricular wall stress and albuminuria w

    Targeting angiotensinogen with RNA-based therapeutics

    Get PDF
    PURPOSE OF REVIEW: To summarize all available data on targeting angiotensinogen with RNA-based therapeutics as a new tool to combat cardiovascular diseases. RECENT FINDINGS: Liver-targeted, stable antisense oligonucleotides and small interfering RNA targeting angiotensinogen are now available, and may allow treatment with at most a few injections per year, thereby improving adherence. Promising results have been obtained in hypertensive animal models, as well as in rodent models of atherosclerosis, polycystic kidney disease and pulmonary fibrosis. The next step will be to evaluate the optimal degree of suppression, synergy with existing renin-angiotensin-aldosterone system blockers, and to determine harmful effects of suppressing angiotensinogen in the context of common comorbidities, such as heart failure and chronic kidney disease. SUMMARY: Targeting angiotensinogen with RNA-based therapeutics is a promising new tool to treat hypertension and diseases beyond. Their long-lasting effects are particularly exciting, and if translated to a clinical application of at most a few administrations per year, may help to eliminate nonadherence

    Selective ETA vs. Dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats

    Get PDF
    Aims Although effective in preventing tumour growth, angiogenesis inhibitors cause off-target effects including cardiovascular toxicity and renal injury, most likely via endothelin (ET)-1 up-regulation. ET-1 via stimulation of the ETA receptor has pro-hypertensive actions whereas stimulation of the ETB receptor can elicit both pro-or antihypertensive effects. In this study, our aim was to determine the efficacy of selective ETA vs. dual ETA/B receptor blockade for the prevention of angiogenesis inhibitor-induced hypertension and albuminuria. Methods and results Male Wistar Kyoto (WKY) rats were treated with vehicle, sunitinib (angiogenesis inhibitor; 14 mg/kg/day) alone or in combination with macitentan (ETA/B receptor antagonist; 30 mg/kg/day) or sitaxentan (selective ETA receptor antagonist; 30 or 100 mg/kg/day) for 8 days. Compared with vehicle, sunitinib treatment caused a rapid and sustained increase in mean arterial pressure of-25 mmHg. Co-treatment with macitentan or sitaxentan abolished the pressor response to sunitinib. Sunitinib did not induce endothelial dysfunction. However, it was associated with increased aortic, mesenteric, and renal oxidative stress, an effect that was absent in mesenteric arteries of the macitentan and sitaxentan co-treated groups. Albuminuria was greater in the sunitinib-than vehicle-treated group. Co-treatment with sitaxentan, but not macitentan, prevented this increase in albuminuria. Sunitinib treatment increased circulating and urinary prostacyclin levels and had no effect on thromboxane levels. These increases in prostacyclin were blunted by co-treatment with sitaxentan. Conclusions Our results demonstrate that both selective ETA and dual ETA/B receptor antagonism prevents sunitinib-induced hypertension, whereas sunitinib-induced albuminuria was only prevented by selective ETA receptor antagonism. In addition, our results uncover a role for prostacyclin in the development of these effects. In conclusion, selective ETA receptor antagonism is sufficient for the prevention of sunitinib-induced hypertension and renal injury

    Angiotensin generation in the brain: a re-evaluation

    No full text

    From ARB to ARNI in Cardiovascular Control

    Get PDF

    Fifty years of research on the brain renin-angiotensin system: what have we learned?

    No full text
    Although the existence of a brain renin-angiotensin system (RAS) had been proposed five decades ago, we still struggle to understand how it functions. The main reason for this is the virtual lack of renin at brain tissue sites. Moreover, although renin's substrate, angiotensinogen, appears to be synthesized locally in the brain, brain angiotensin (Ang) II disappeared after selective silencing of hepatic angiotensinogen. This implies that brain Ang generation depends on hepatic angiotensinogen after all. Rodrigues et al. (Clin Sci (Lond) (2021) 135:1353-1367) generated a transgenic mouse model overexpressing full-length rat angiotensinogen in astrocytes, and observed massively elevated brain Ang II levels, increased sympathetic nervous activity and vasopressin, and up-regulated erythropoiesis. Yet, blood pressure and kidney function remained unaltered, and surprisingly no other Ang metabolites occurred in the brain. Circulating renin was suppressed. This commentary critically discusses these findings, concluding that apparently in the brain, overexpressed angiotensinogen can be cleaved by an unidentified non-renin enzyme, yielding Ang II directly, which then binds to Ang receptors, allowing no metabolism by angiotensinases like ACE2 and aminopeptidase A. Future studies should now unravel the identity of this non-renin enzyme, and determine whether it also contributes to Ang II generation at brain tissue sites in wildtype animals. Such studies should also re-evaluate the concept that Ang-(1-7) and Ang III, generated by ACE2 and aminopeptidase A, respectively, have important functions in the brain

    Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role?

    Get PDF
    ABSTRACT: In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research
    corecore