4 research outputs found

    Personalized probiotic strategy considering bowel habits: impacts on gut microbiota composition and alleviation of gastrointestinal symptoms via Consti-Biome and Sensi-Biome

    Get PDF
    Personalized probiotic regimens, taking into account individual characteristics such as stool patterns, have the potential to alleviate gastrointestinal disorders and improve gut health while avoiding the variability exhibited among individuals by conventional probiotics. This study aimed to explore the efficacy of personalized probiotic interventions in managing distinct stool patterns (constipation and diarrhea) by investigating their impact on the gut microbiome and gastrointestinal symptoms using a prospective, randomized, double-blind, placebo-controlled clinical trial design. This research leverages the multi-strain probiotic formulas, Consti-Biome and Sensi-Biome, which have previously demonstrated efficacy in alleviating constipation and diarrhea symptoms, respectively. Improvement in clinical symptoms improvement and compositional changes in the gut microbiome were analyzed in participants with predominant constipation or diarrhea symptoms. Results indicate that tailored probiotics could improve constipation and diarrhea by promoting Erysipelotrichaceae and Lactobacillaceae, producers of short-chain fatty acids, and regulating inflammation and pain-associated taxa. These findings suggest the potential of tailored probiotic prescriptions and emphasize the need for personalized therapeutic approaches for digestive disorders.Clinical trial registration: https://cris.nih.go.kr/cris/index/index.do, identifier KCT0009111

    Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats

    Get PDF
    Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora

    Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets

    No full text
    The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and di-sease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.N

    Emotional well-being and gut microbiome profiles by enterotype

    No full text
    With increasing attention being paid to improving emotional well-being, recent evidence points to gut microbiota as a key player in regulating mental and physical health via bidirectional communication between the brain and gut. Here, we examine the association between emotional well-being and gut microbiome profiles (i.e., gut microbiome composition, diversity, and the moderating role of the enterotypes) among healthy Korean adults (n=83, mean age=48.9, SD=13.2). The research was performed using high-throughput 16S rRNA gene sequencing to obtain gut microbiome profiles, as well as a self-report survey that included the Positive Affect Negative Affect Schedule (PANAS). The cluster-based analysis identified two enterotypes dominated by the genera Bacteroides (n=49) and Prevotella (n=34). Generalized linear regression analysis reveals significant associations between positive emotion and gut microbiome diversity (Shannon Index) among participants in the Prevotella dominant group, whereas no such relationship emerged among participants in the Bacteroides group. Moreover, a novel genus from the family Lachnospiraceae is associated with emotional well-being scores, both positive and negative. Together, the current findings highlight the enterotype-specific links between the gut microbiota community and emotion in healthy adults and suggest the possible roles of the gut microbiome in promoting mental health.
    corecore