16 research outputs found

    Quenched Fe Moment in the Collapsed Tetragonal Phase of Ca1−x_{1-x}Prx_{x}Fe2_2As2_2

    Full text link
    We report 75^{75}As NMR studies on single crystals of rare-earth doped iron pnictides superconductor Ca1−x_{1-x}Prx_{x}Fe2_{2}As2_{2} (xx=0.075 and 0.15). The 75^{75}As spectra show a chemical pressure effect with doping and a first order structure transition to the collapsed tetragonal phase upon cooling. A sharp drop of the Knight shift is seen below the structural transition, whereas 1/T11/T_1 is strongly enhanced at low-temperatures. These evidences indicate quenching of Fe local magnetism and short-range ordering of Pr3+^{3+} moment in the collapsed tetragonal phase. The quenched Fe moment through structure collapse suggests a strong interplay of structure and magnetism, which is important for understanding the nature of the collapsed tetragonal phase.Comment: 5 pages, 5 figure

    Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2

    Full text link
    Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This demonstrates that phosphorous substitution and physical pressure result in similar superconducting phase diagrams, and that phosphorous substitution does not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical Society of Japa

    Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}

    Full text link
    The magnetic phase diagram of EuFe2_{2}(As1−x_{1-x}Px_{x})2_{2} was investigated by means of magnetization and muon-spin rotation studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressure have a similar effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure

    Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction

    Full text link
    Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2 revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C associated with the disorder of the Fe vacancies. Irreversibility observed during the transition is likely associated with a mobility of intercalated Alkali atoms. Pressure-dependent synchrotron powder diffraction on Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that the I4/m superstructure reflections are present up to pressures of 120 kbar. This may indicate that the ordering of the Fe vacancies is present in both superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl
    corecore