255 research outputs found

    Monte Carlo Simulations in NDT

    Get PDF

    DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism

    Get PDF
    SummaryStructural maintenance of chromosome (SMC) complexes are proteinaceous rings that embrace DNA to enable vital chromosomal functions. The ring is formed by two SMC subunits, closed at a pair of ATPase heads, whose interaction is reinforced by a kleisin subunit. Using biochemical analysis of fission-yeast cohesin, we find that a similar series of events facilitates both topological entrapment and release of DNA. DNA-sensing lysines trigger ATP hydrolysis to open the SMC head interface, whereas the Wapl subunit disengages kleisin, but only after ATP rebinds. This suggests an interlocking gate mechanism for DNA transport both into and out of the cohesin ring. The entry direction is facilitated by a cohesin loader that appears to fold cohesin to expose the DNA sensor. Our results provide a model for dynamic DNA binding by all members of the SMC family and explain how lysine acetylation of cohesin establishes enduring sister chromatid cohesion

    Cell Cycle: The Art of Multi-Tasking

    Get PDF
    SummarySeparase is the protease that cleaves the cohesive link between sister chromatids to trigger chromosome segregation in mitosis and meiosis. This enzyme is known to orchestrate additional mitotic events and we now gain new insight into how it promotes cytokinesis in the nematode Caenorhabditis elegans

    Chromosome Biology: The Crux of the Ring

    Get PDF
    SMC proteins are key components of large ring-shaped chromosomal protein complexes, such as cohesin and condensin. New evidence supports the idea that these rings topologically encircle DNA. Hints also emerge as to what it may take for DNA to enter the ring

    Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase

    Get PDF
    Completion of mitotic exit and cytokinesis requires the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. A key enzyme that counteracts Cdk during budding yeast mitotic exit is the Cdc14 phosphatase. Cdc14 is inactive for much of the cell cycle, sequestered by its inhibitor Net1 in the nucleolus. At anaphase onset, separase-dependent down-regulation of PP2ACdc55 allows phosphorylation of Net1 and consequent Cdc14 release. How separase causes PP2ACdc55 down-regulation is not known. Here, we show that two Cdc55-interacting proteins, Zds1 and Zds2, contribute to timely Cdc14 activation during mitotic exit. Zds1 and Zds2 are required downstream of separase to facilitate nucleolar Cdc14 release. Ectopic Zds1 expression in turn is sufficient to down-regulate PP2ACdc55 and promote Net1 phosphorylation. These findings identify Zds1 and Zds2 as new components of the mitotic exit machinery, involved in activation of the Cdc14 phosphatase at anaphase onset. Our results suggest that these proteins may act as separase-regulated PP2ACdc55 inhibitors

    Conserved features of cohesin binding along fission yeast chromosomes

    Get PDF
    High-resolution analysis of cohesin localization on fission yeast chromosomes reveals that several determinants, previously thought to be organism-specific, come together to shape overall distribution

    A global view of substrate phosphorylation and dephosphorylation during budding yeast mitotic exit

    Get PDF
    The cell cycle is the process by which a cell duplicates its DNA during S-phase and divides its chromosomes during M-phase, creating two genetically identical daughter cells. Cell cycle events are ordered by synthesis and degradation of key cell regulators and by phosphorylation and dephosphorylation of numerous substrates. Phosphorylation can alter the activity, interactions or subcellular localization of a protein. A substrate’s phosphorylation status is the readout of competing activities of kinases and phosphatases that target each of its phosphorylation sites. In our recent study (EMBO J. 37, e98745), we performed time-resolved global phosphoproteome analysis of a period during the cell cycle known as mitotic exit. During this time, numerous cell biological events happen in fast succession but in strict order. First, at the metaphase to anaphase transition, the mitotic spindle elongates to pull maximally condensed chromosomes to opposite cell halves. Shortly after that, spindles disassemble and chromosomes decondense, before finally cell division is completed by cytokinesis. Our time-resolved phosphoproteome analysis of this period in budding yeast provided a survey of the principles of phosphoregulation used to order these events

    Mitotic exit in mammalian cells

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. Creation of derivativeworks is permitted but the resultingworkmay be distributed only under the same or similar licence to this one. This licence does not permit commercial exploitation without specific permission. © 2009 EMBO and Macmillan Publishers Limited All rights reserved
    corecore