7 research outputs found

    Taxonomic implications of morphometric analysis of earless seal limb bones

    No full text
    Fossil Phocidae (earless seals) are mostly known from isolated postcranial material, forcing researchers to rely upon humeri and femora for the diagnosis of taxa and reconstruction of phylogeny. However, the utility of these elements has never been rigorously tested. Here, we provide the first quantitative analysis of morphometric data from the humerus and femur, incorporating measurement data from all extant genera as well as several fossil taxa. Principle components analysis (PCA) found that genera clustered together on PC1 and PC2, although there was poor segregation of taxa and extensive overlap with genera in adjacent regions of the morphospace. Discriminant function analysis (DFA) was able to sort fossil taxa into different subfamilies, but performed poorly at lower taxonomic levels. A preliminary review of phylogenetic characters found that while some characters performed well at distinguishing different subfamilies, many characters were poorly defined and not quantified, possessed greater individual variation than past studies suggested, or were more variable in fossil taxa. Our analyses suggest that the utility of isolated humeri and femora for diagnosis of new taxa has been greatly exaggerated, and that extreme caution should be applied to interpretations of taxonomy of fossil material based on isolated elements. Future research should instead focus on study of associated skeletons and cranial material. A thorough revision of fossil phocid taxonomy is needed, and many described taxa are likely to be nomina dubia and of limited use in phylogenetic analysis

    The first possible remingtonocetid stem whale from North America

    No full text
    Remingtonocetid cetaceans are a group of stem whales known from the Indo-Pakistan and North African Tethys Ocean. An unusual tooth was discovered by Peter J. Harmatuk in 1973 in the middle Eocene Superior Stone Quarry (now the Martin Marietta Quarry) near Castle Hayne, North Carolina, USA. Here we identify this tooth as a premolar of a possible member of the Remingtonocetidae, which would extend the range of this family across the Atlantic to eastern North America. This partial tooth includes most of the crown (missing the mesial end) and the posterior root. The tooth bears a single central cusp and a worn accessory cusp on the posterior end. This tooth most closely resembles premolars of Remingtonocetus and is rather dissimilar to premolars of other archaeocetes known from the middle Eocene of North America, such as the families Protocetidae and Basilosauridae. This new record potentially expands the geographic distribution of the amphibious cetacean family Remingtonocetidae across the Atlantic

    Marine mammals through time: when less is more in studying palaeodiversity

    No full text
    The validity of biological explanations of patterns of palaeodiversity has been called into question owing to an apparent correlation of diversity with the amount of sedimentary rock preserved. However, this claim has largely been based on comprehensive estimates of global marine Phanerozoic diversity, thus raising the question of whether a similar bias applies to the records of smaller, well-defined taxonomic groups. Here, new data on European Caenozoic marine sedimentary rock outcrop area are presented and compared with European occurrences of three groups of marine mammals (cetaceans, pinnipedimorphs and sirenians). Limited evidence was found for a correlation of outcrop area with marine mammal palaeodiversity. In addition, similar patterns were identified in the cetacean and pinnipedimorph diversity data. This may point to the preservation of a genuine biological signal not overwhelmed by geological biases in the marine mammal diversity data, and opens the door to further analyses of both marine mammal evolution and geological bias in other small and well-defined groups of taxa

    A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales

    No full text
    Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual
    corecore