17 research outputs found

    Dynamic Land Cover Mapping of Urbanized Cities with Landsat 8 Multi-temporal Images: Comparative Evaluation of Classification Algorithms and Dimension Reduction Methods

    No full text
    Uncontrolled and continuous urbanization is an important problem in the metropolitan cities of developing countries. Urbanization progress that occurs due to population expansion and migration results in important changes in the land cover characteristics of a city. These changes mostly affect natural habitats and the ecosystem in a negative manner. Hence, urbanization-related changes should be monitored regularly, and land cover maps should be updated to reflect the current situation. This research presents a comparative evaluation of two classification algorithms, pixel-based support vector machine (SVM) classification and decision-tree-oriented geographic object-based image analysis (GEOBIA) classification, in producing a dynamic land cover map of the Istanbul metropolitan city in Turkey between 2013 and 2017 using Landsat 8 Operational Land Imager (OLI) multi-temporal satellite images. Additionally, the efficiencies of the two data dimension reduction methods are evaluated as part of this research. For dimension reduction, built-up index (BUI) and principal component analysis (PCA) data were calculated for five images during the mentioned period, and the classification algorithms were applied on data stacks for each dimension reduction method. The classification results indicate that the GEOBIA classification of the BUI data set provided the highest accuracy, with a 91.60% overall accuracy and 0.91 kappa value. This combination was followed by the GEOBIA classification of the PCA data set, which highlights the overall efficiency of the GEOBIA over the SVM method. On the other hand, the BUI data set provided more reliable and consistent results for urban expansion classes due to representing physical responses of the surface when compared to the data set of the PCA, which is a spectral transformation method

    Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images

    No full text
    On 30 May 2013, a forest fire occurred in Izmir, Turkey causing damage to both forest and fruit trees within the region. In this research, pre- and post-fire SPOT-6 images obtained on 30 April 2013 and 31 May 2013 were used to identify the extent of forest fire within the region. SPOT-6 images of the study region were orthorectified and classified using pixel and object-based classification (OBC) algorithms to accurately delineate the boundaries of burned areas. The present results show that for OBC using only normalized difference vegetation index (NDVI) thresholds is not sufficient enough to map the burn scars; however, creating a new and simple rule set that included mean brightness values of near infrared and red channels in addition to mean NDVI values of segments considerably improved the accuracy of classification. According to the accuracy assessment results, the burned area was mapped with a 0.9322 kappa value in OBC, while a 0.7433 kappa value was observed in pixel-based classification. Lastly, classification results were integrated with the forest management map to determine the effected forest types after the fire to be used by the National Forest Directorate for their operational activities to effectively manage the fire, response and recovery processes

    Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement

    No full text
    Raw remotely sensed images contain geometric distortions and cannot be used directly for map-based applications, accurate locational information extraction or geospatial data integration. A geometric correction process must be conducted to minimize the errors related to distortions and achieve the desired location accuracy before further analysis. A considerable number of images might be needed when working over large areas or in temporal domains in which manual geometric correction requires more labor and time. To overcome these problems, new algorithms have been developed to make the geometric correction process autonomous. The Scale Invariant Feature Transform (SIFT) algorithm is an image matching algorithm used in remote sensing applications that has received attention in recent years. In this study, the effects of the incidence angle, surface topography and land cover (LC) characteristics on SIFT-based automated orthorectification were investigated at three different study sites with different topographic conditions and LC characteristics using Pleiades very high resolution (VHR) images acquired at different incidence angles. The results showed that the location accuracy of the orthorectified images increased with lower incidence angle images. More importantly, the topographic characteristics had no observable impacts on the location accuracy of SIFT-based automated orthorectification, and the results showed that Ground Control Points (GCPs) are mainly concentrated in the “Forest” and “Semi Natural Area” LC classes. A multi-thread code was designed to reduce the automated processing time, and the results showed that the process performed 7 to 16 times faster using an automated approach. Analyses performed on various spectral modes of multispectral data showed that the arithmetic data derived from pan-sharpened multispectral images can be used in automated SIFT-based RPC orthorectification

    An Approach for the Pan Sharpening of Very High Resolution Satellite Images Using a CIELab Color Based Component Substitution Algorithm

    No full text
    Recent very high spatial resolution (VHR) remote sensing satellites provide high spatial resolution panchromatic (Pan) images in addition to multispectral (MS) images. The pan sharpening process has a critical role in image processing tasks and geospatial information extraction from satellite images. In this research, CIELab color based component substitution Pan sharpening algorithm was proposed for Pan sharpening of the Pleiades VHR images. The proposed method was compared with the state-of-the-art Pan sharpening methods, such as IHS, EHLERS, NNDiffuse and GIHS. The selected study region included ten test sites, each of them representing complex landscapes with various land categories, to evaluate the performance of Pan sharpening methods in varying land surface characteristics. The spatial and spectral performance of the Pan sharpening methods were evaluated by eleven accuracy metrics and visual interpretation. The results of the evaluation indicated that proposed CIELab color-based method reached promising results and improved the spectral and spatial information preservation

    An Investigation on Water Quality of Darlik Dam Drinking Water using Satellite Images

    No full text
    Darlik Dam supplies 15% of the water demand of Istanbul Metropolitan City of Turkey. Water quality (WQ) in the Darlik Dam was investigated from Landsat 5 TM satellite images of the years 2004, 2005, and 2006 in order to determine land use/land cover changes in the watershed of the dam that may deteriorate its WQ. The images were geometrically and atmospherically corrected for WQ analysis. Next, an investigation was made by multiple regression analysis between the unitless planetary reflectance values of the first four bands of the June 2005 Landsat TM image of the dam and WQ parameters, such as chlorophyll-a, total dissolved matter, turbidity, total phosphorous, and total nitrogen, measured at satellite image acquisition time at seven stations in the dam. Finally, WQ in the dam was studied from satellite images of the years 2004, 2005, and 2006 by pattern recognition techniques in order to determine possible water pollution in the dam. This study was compared to a previous study done by the authors in the Küçükçekmece water reservoir, also in Istanbul City

    Accuracy Assessment of Different Digital Surface Models

    No full text
    Digital elevation models (DEMs), which can occur in the form of digital surface models (DSMs) or digital terrain models (DTMs), are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30 m, and Advanced Land Observing Satellite (ALOS) 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR) 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI)—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross-sections were extracted from the DSMs to evaluate the accuracies related to land cover. The PHR and SPOT DSMs had the highest accuracies of all of the testing methods, followed by the ALOS DSM, which had very promising results. Comparatively, the SRTM and ASTER DSMs had the worst accuracies. Additionally, the PHR and SPOT DSMs captured man-made objects and above-terrain structures, which indicated the need for post-processing to attain better representations

    Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data

    Get PDF
    This study focuses on the analysis of the Landsat-5 TM + SPOT-Pan (1992), IRS-1C/D LISS + Pan (2000), and Landsat-5 TM (2006) satellite images that reflect the drastic land use/land cover changes in the Küçükçekmece Lake region, Istanbul. Landsat-5 TM satellite data dated 2006 was used for mapping water quality. A multiple regression analysis was carried out between the unitless planetary reflectance values derived from the satellite image and in situ water quality parameters chlorophyll a, total phosphorus, total nitrogen, turbidity, and biological and chemical oxygen demand measured at a number of stations homogenously distributed over the lake surface. The results of this study provided valuable information to local administrators on the water quality of Küçükçekmece Lake, which is a large water resource of the Istanbul Metropolitan Area. Results also show that such a methodology structured by use of reflectance values provided from satellite imagery, in situ water quality measurements, and basin land use/land cover characteristics obtained from images can serve as a powerful and rapid monitoring tool for the drinking water basins that suffer from rapid urbanization and pollution, all around the world

    Minimizing the Limitations in Improving Historical Aerial Photographs with Super-Resolution Technique

    No full text
    Compared to natural images in artificial datasets, it is more challenging to improve the spatial resolution of remote sensing optical image data using super-resolution techniques. Historical aerial images are primarily grayscale due to single-band acquisition, which further limits their recoverability. To avoid data limitations, it is advised to employ a data collection consisting of images with homogeneously distributed intensity values of land use/cover objects at various resolution values. Thus, two different datasets were created. In line with the proposed approach, images of bare land, farmland, residential areas, and forested regions were extracted from orthophotos of different years with different spatial resolutions. In addition, images with intensity values in a more limited range for the same categories were obtained from a single year’s orthophoto to highlight the contribution of the suggested approach. Training of two different datasets was performed independently using a deep learning-based super-resolution model, and the same test images were enhanced individually with the weights of both models. The results were assessed using a variety of quality metrics in addition to visual interpretation. The findings indicate that the suggested dataset structure and content can enable the recovery of more details and effectively remove the smoothing effect. In addition, the trend of the metric values matches the visual perception results
    corecore