30 research outputs found
Production and removal of superoxide anion radical by artificial metalloenzymes and redoxactive metals
Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article
Functional Microfiber Nonwoven Fabric with Sialic Acid-Immobilized Polymer Brush for Capturing Lectin in Aerosol
The influenza virus has been known as a representative infectious virus that harms human health from the past to the present day. We have promoted the development of a novel adsorbent capable of adsorbing influenza viruses in the form of aerosols in the air. In this study, to develop a material to adsorb the influenza virus, a functional group was introduced into a microfiber nonwoven fabric (MNWF) manufactured through radiation-induced graft polymerization (RIGP), and sialic acid was immobilized to mimic the sugar chain cluster effect. The functional group was used by coupling disodium iminodiacetate monohydrate (IDA) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), and N-acetylneuraminic acid (NANA) was selected for sialic acid. IDA-EDC was introduced into GMA MNWF with an average molar conversion of 47%. For NANA MNWF with a degree of grafting (dg) of 87% introduced with sialic acid, 118.2 of 200 µg of aerosolized lectin was adsorbed, confirming that the maximum adsorption amount was 59.1%. In NANA MNWF of 100% or more dg, a tendency to decrease the amount of lectin adsorption was observed compared to NANA MNWF of 80–100% dg
Menthol-enhanced cytotoxicity of cigarette smoke demonstrated in two bioassay models
Background
Cigarette smoke is harmful to human health at both cellular and genetic levels. Recently, a unique bioassay for smoke cytotoxicity using air pollution-sensitive plant cells (tobacco) has been proposed.
Methods
Model plant cells (tobacco Bel-W3 cells) and human cells (alveolar epithelial A549 cells) suspended in fresh culture media were exposed to cigarette smoke sampled after lighting the tip of cigarettes (with vs. without menthol capsules) which were attached to a glass pipe connected to the cell-containing plastic tubes. Control cultures were also assessed.
Results
After exposing tobacco plant cells to cigarette smoke, cell death occurred in a dose-dependent manner. Cell death was significantly enhanced by mentholated smoke, while menthol alone was shown to be inert suggesting that menthol synergistically contributes to the enhancement of cell death, initiated by smoke-associated compounds. The enhanced toxicity of mentholated smoke was confirmed in human alveolar epithelial A549 cells.
Conclusions
Cigarette smoke cytotoxicity leading to cell death assessed in plant and human model cells was enhanced by menthol. Further research into these findings is encouraged