16 research outputs found

    Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7

    Get PDF
    Chemokine receptors play important roles in the immune system and are linked to several human diseases. Targeting chemokine receptors have so far shown very little success owing to, to some extent, the promiscuity of the immune system and the high degree of biased signaling within it. CCR7 and its two endogenous ligands display biased signaling and here we investigate the differences between the two ligands, CCL21 and CCL19, with respect to their biased activation of CCR7. We use bystander bioluminescence resonance energy transfer (BRET) based signaling assays and Transwell migration assays to determine (A) how swapping of domains between the two ligands affect their signaling patterns and (B) how receptor mutagenesis impacts signaling. Using chimeric ligands we find that the chemokine core domains are central for determining signaling outcome as the lack of β-arrestin-2 recruitment displayed by CCL21 is linked to its core domain and not N-terminus. Through a mutagenesis screen, we identify the extracellular domains of CCR7 to be important for both ligands and show that the two chemokines interact differentially with extracellular loop 2 (ECL-2). By using in silico modeling, we propose a link between ECL-2 interaction and CCR7 signal transduction. Our mutagenesis study also suggests a lysine in the top of TM3, K1303.26, to be important for G protein signaling, but not β-arrestin-2 recruitment. Taken together, the bias in CCR7 between CCL19 and CCL21 relies on the chemokine core domains, where interactions with ECL-2 seem particularly important. Moreover, TM3 selectively regulates G protein signaling as found for other chemokine receptors.publishe

    CCR7 : Roles in cancer cell dissemination, migration and metastasis formation

    No full text
    The CC-chemokine receptor 7 (CCR7) coordinates the migration of cancer cells as well as immune cells towards lymphatic organs where its two ligands CCL19 and CCL21 are constitutively expressed. Here we provide a topological model of CCR7, which belongs to the class A of G-protein coupled, seven-transmembrane spanning receptors, and describe how CCR7 expression is regulated. We focus on its role in cancer cell migration and metastasis formation and discuss how cancer cells can utilize CCR7 or its ligands to escape from immune surveillance

    V domain of RAGE interacts with AGEs on prostate carcinoma cells

    No full text
    BACKGROUND: The expression of the scavenger receptor for advanced glycation end products (RAGE) and various ligands of RAGE correlate significantly with cancer progression. However, the mechanism of RAGE/sRAGE-induced cancer cell activation and ligand usage remain largely unknown.METHODS: Androgen-independent, highly invasive, as well as androgen-dependent, non-invasive human prostate carcinoma (CaP) cells were investigated for their interaction with the soluble form of RAGE (sRAGE). Using neutralizing antibodies and soluble proteins, the ligand for RAGE was identified on CaP cells and ligand binding with sRAGE was biochemically characterized.RESULTS: Both androgen-independent, highly invasive and androgen-dependent, non-invasive CaP cells interacted with immobilized sRAGE in a surprisingly strong manner. Using C-terminal truncation variants of RAGE we identified the V domain being responsible for the adhesion of CaP cells to sRAGE. Moreover, we demonstrate that this adhesion cannot be blocked by S100B or neutralizing antibodies against β integrins, or amphoterin. However, the CaP cell–RAGE interaction was inhibited with either AGE-modified proteins, or with neutralizing antibodies against AGE or RAGE. Despite similar binding kinetics between AGE-modified BSA and different RAGE domains, only applying an excess of sRAGE, but not the VC1 or V domain of RAGE, was able to block the CaP cell–RAGE interaction.CONCLUSIONS: We identified AGEs as the ligand for RAGE on both invasive and non-invasive prostate cancer cells.publishe

    Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity

    No full text
    Spatially distinct pools of the small GTPase Cdc42 were observed, but the major focus of research so far has been to investigate its signaling at the plasma membrane. We recently showed that the Golgi pool of Cdc42 is relevant for cell polarity and that it is regulated by GM130, a Golgi matrix protein. Loss of GM130 abrogated cell polarity and consistent with the notion that polarity is frequently impaired in cancer, we found that GM130 is downregulated in colorectal cancer. Whether the loss of GM130 solely affects polarity, or whether it affects other processes relevant for tumorigenesis remains unclear. In a panel of breast cancer cells lines, we investigated the consequences of GM130 depletion on traits of relevance for tumor progression, such as survival, proliferation, adhesion, migration and invasion. We show that cellular assays that depend on polarity, such as chemotaxis and wound scratch assays, are only of limited use to investigate the role of polarity modulators in cancer. Depletion of GM130 increases cellular velocity and increases the invasiveness of breast cancer cells, therefore supporting the view that alterations of polarity contribute to tumor progression

    A unique signal sequence of the chemokine receptor CCR7 promotes package into COPII vesicles for efficient receptor trafficking

    No full text
    Chemokine receptors are considered to belong to the group of G protein-coupled receptors that use the first transmembrane domain as signal anchor sequence for membrane insertion instead of a cleavable N-terminal signal sequence. Chemokine recognition is determined by the N-termini of chemokine receptors. Here, we show that the chemokine receptor CCR7, which is essential for directed migration of adaptive immune cells, possesses a 24 amino acids long N-terminal signal sequence that is unique among chemokine receptors. This sequence is cleaved off the mature human and mouse protein. Introducing single point mutations in the hydrophobic core h-region or in the polar C-terminal segment (c-region) of the signal sequence to interfere with its cleavage retained CCR7 in the ER and prevented its surface expression. Furthermore, we demonstrate the correct topology of the 35 amino acids short extracellular N-tail of CCR7 in a deletion mutant lacking the natural signal sequence. This signal sequence deletion mutant of CCR7 is fully functional as it efficiently binds its ligand, elicits chemokine-induced calcium mobilization, and directs cell migration. However, we show that the signal sequence promotes efficient recruitment of the GPCR to ER exit sites, thereby controlling efficient ER to Golgi trafficking of CCR7 on its way to reach the plasma membrane.publishe

    CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration

    Get PDF
    Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.publishe

    Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7

    No full text
    The chemokine receptor CCR7 plays a pivotal role in health and disease. In particular, CCR7 controls homing of antigen-bearing dendritic cells and T cells to lymph nodes, where adaptive immune responses are initiated. However, CCR7 also guides T cells to inflamed synovium and thereby contributes to rheumatoid arthritis and promotes cancer cell migration and metastasis formation. Nanobodies have recently emerged as versatile tools to study G-protein-coupled receptor functions and are being tested in diagnostics and therapeutics. In this study, we designed a strategy to engineer novel nanobodies recognizing human CCR7. We generated a nanobody library based on a solved crystal structure of the nanobody Nb80 recognizing the β2-adrenergic receptor (β2AR) and by specifically randomizing two segments within complementarity determining region 1 (CDR1) and CDR3 of Nb80 known to interact with β2AR. We fused the nanobody library to one half of split-YFP in order to identify individual nanobody clones interacting with CCR7 fused to the other half of split-YFP using bimolecular fluorescence complementation. We present three novel nanobodies, termed Nb1, Nb5, and Nb38, that recognize human CCR7 without interfering with G-protein-coupling and downstream signaling. Moreover, we were able to follow CCR7 trafficking upon CCL19 triggering using Nb1, Nb5, and Nb38

    The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles

    No full text
    Biodegradable microparticles (MP) represent a promising and efficient delivery system for parenteral vaccination. Recently, MP have also been explored as tool for the ex vivo antigen loading of professional antigen presenting cells such as dendritic cells (DC) to be used as cellular vaccines. The purpose of this study was to investigate various polycationic coatings on poly(lactide-co-glycolide) (PLGA) MP, with regard to their effect on phenotypic and functional maturation of monocyte-derived DC (MoDC) that had previously been loaded with the MP in vitro. The preparation and concomitant coating of the PLGA was performed by means of a solvent extraction/evaporation method using a recently developed microextrusion-based technique. The polyelectrolytes tested for MP coating encompassed aminodextran, chitosan, poly(ethylene imine) (PEI), poly(L-lysine) and protamine. Uncoated and differently coated PLGA MP were fed to immature MoDC, which ingested efficiently the different MP types irrespective of their surface coating. The MPloaded immature MoDC were then matured with the help of a cytokine/PGE-2 maturation cocktail. Here, the presence of the ingested MP did not affect the MoDC maturation in terms of expression of the surface markers CD80, CD83, CD86, HLA-DR and MMR, irrespective of the MP surface coating. Importantly, none of the PLGA MP types alone induced significant maturation of MoDC in the absence of the maturation cocktail. MP-loaded and subsequently matured MoDC expressed high levels of the chemokine receptor CCR7, whose functional activity was evidenced by the migration of MoDC towards CCL21, irrespective of the presence of ingested MP. Further, MP-loaded and subsequently matured MoDC also secreted comparable amounts of IL-10 and IL-12p70, irrespective of the presence of ingested MP except for PEI-coated PLGA MP, which enhanced significantly the secretion of IL-12p70 in mature MoDC. In conclusion, phenotypic and functional maturation of MoDC by means of a maturation cocktail remained unchanged irrespective of the presence of previously ingested differently coated PLGA MP. This offers interesting perspectives for using these particulate systems together with entrapped antigens for ex vivo loading of MoDC in view of cellular immunotherapy

    Encapsulation of proteins and peptides into biodegradable poly(D,L-lactide-co-glycolide) microspheres prolongs and enhances antigen presentation by human dendritic cells

    No full text
    Dendritic cell (DC)-based immunotherapy has been hampered by the lack of suitable methods for antigen delivery. Here, we use biodegradable poly(d,l-lactide-co-glycolide) microspheres (PLGA-MS) as carriers of peptides and proteins for antigen delivery to human monocyte-derived DC (MoDC). Compared to soluble proteins, MHC classes I and II-restricted presentation of PLGA-MS-encapsulated proteins and peptides by MoDC was markedly prolonged and proteins were presented 50-fold more efficiently on class I molecules. The vaccination of mice with DC loaded with PLGA-MS-encapsulated proteins raised strong and persisting cytotoxic T cell responses. In conclusion, antigen delivery via PLGA-MS markedly enhanced the duration of antigen presentation by human MoDC and the potency of DC-based vaccination
    corecore