123 research outputs found

    Universal Phase Diagram for High-Piezoelectric Perovskite Systems

    Get PDF
    Strong piezoelectricity in the perovskite-type PbZr(1-x)TixO3 (PZT) and Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) systems is generally associated with the existence of a morphotropic phase boundary (MPB) separating regions with rhombohedral and tetragonal symmetry. An x-ray study of PZN-9%PT has revealed the presence of a new orthorhombic phase at the MPB, and a near-vertical boundary between the rhombohedral and orthorhombic phases, similar to that found for PZT between the rhombohedral and monoclinic phases. We discuss the results in the light of a recent theoretical paper by Vanderbilt and Cohen, which attributes these low-symmetry phases to the high anharmonicity in these oxide systems.Comment: REVTeX file. 4 pages,=A0 4 figures embedde

    Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary II. Theoretical treatment

    Full text link
    The structural characteristics of the perovskite- based ferroelectric Pb(Zn1/3Nb2/3)O3-9%PbTiO3 at the morphotropic phase boundary (MPB) region (x≃0.09) have been analyzed. The analysis is based on the symmetry adapted free energy functions under the assumption that the total polarization and the unit cell volume are conserved during the transformations between various morphotropic phases. Overall features of the relationships between the observed lattice constants at various conditions have been consistently explained. The origin of the anomalous physical properties at MPB is discussed

    Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary I. Neutron diffraction study on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3

    Full text link
    The symmetry was examined using neutron diffraction method on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3 (PZN/9PT) which has a composition at the morphotropic phase boundary (MPB) between Pb(Zn1/3Nb2/3)O3 and PbTiO3. The results were compared with those of other specimens with same composition but with different prehistory. The equilibrium state of all examined specimens is not the mixture of rhombohedral and tetragonal phases of the end members but exists in a new polarization rotation line Mc# (orthorhombic-monoclinic line). Among examined specimens, one exhibited tetragonal symmetry at room temperature but recovered monoclinic phase after a cooling and heating cycle

    Neutron Diffraction Study of Field Cooling Effects on Relaxor Ferroelectrics Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}] O_{3}

    Full text link
    High-temperature (T) and high-electric-field (E) effects on Pb[(Zn_{1/3} Nb_{2/3})_{0.92} Ti_{0.08}]O_3 (PZN-8%PT) were studied comprehensively by neutron diffraction in the ranges 300 <= T <= 550 K and 0 <= E <= 15 kV/cm. We have focused on how phase transitions depend on preceding thermal and electrical sequences. In the field cooling process (FC, E parallel [001] >= 0.5 kV/cm), a successive cubic (C) --> tetragonal (T) --> monoclinic (M_C) transition was observed. In the zero field cooling process (ZFC), however, we have found that the system does not transform to the rhombohedral (R) phase as widely believed, but to a new, unidentified phase, which we call X. X gives a Bragg peak profile similar to that expected for R, but the c-axis is always slightly shorter than the a-axis. As for field effects on the X phase, we found an irreversible X --> M_C transition via another monoclinic phase (M_A) as expected from a previous report [Noheda et al. Phys. Rev. Lett. 86, 3891 (2001)]. At a higher electric field, we confirmed a c-axis jump associated with the field-induced M_C --> T transition, which was observed by strain and x-ray diffraction measurements.Comment: 8 pages, 9 figures, revise

    Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3

    Get PDF
    The origin of ultrahigh piezoelectricity in the relaxor ferroelectric PbZn1/3Nb2/3O3-PbTiO3 was studied with an electric field applied along the [001] direction. The zero-field rhombohedral R phase starts to follow the direct polarization path to tetragonal symmetry via an intermediate monoclinic M phase, but then jumps irreversibly to an alternate path involving a different type of monoclinic distortion. Details of the structure and domain configuration of this novel phase are described. This result suggests that there is a nearby R-M phase boundary as found in the Pb(Ti,Zr)O3 system.Comment: REVTeX file. 4 pages. New version after referees' comment

    Ground State of Relaxor Ferroelectric Pb(Zn1/3Nb2/3)O3Pb(Zn_{1/3}Nb_{2/3})O_3

    Full text link
    High energy x-ray diffraction measurements on Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) single crystals show that the system does not have a rhombohedral symmetry at room temperature as previously believed. The new phase (X) in the bulk of the crystal gives Bragg peaks similar to that of a nearly cubic lattice with a slight tetragonal distortion. The Bragg profile remains sharp with no evidence of size broadening due to the polar micro crystals (MC). However, in our preliminary studies of the skin, we have found the expected rhombohedral (R) phase as a surface state. On the other hand, studies on an electric-field poled PZN single crystal clearly indicate a rhombohedral phase at room temperature.Comment: 11 pages with 3 figure
    • …
    corecore