196 research outputs found

    Neural magnetic field dependent fMRI toward direct functional connectivity measurements: A phantom study

    Get PDF
    Recently, the main issue in neuroscience has been the imaging of the functional connectivity in the brain. No modality that can measure functional connectivity directly, however, has been developed yet. Here, we show the novel MRI sequence, called the partial spinlock sequence toward direct measurements of functional connectivity. This study investigates a probable measurement of phase differences directly associated with functional connectivity. By employing partial spinlock imaging, the neural magnetic field might influence the magnetic resonance signals. Using simulation and phantom studies to model the neural magnetic fields, we showed that magnetic resonance signals vary depending on the phase of an externally applied oscillating magnetic field with non-right flip angles. These results suggest that the partial spinlock sequence is a promising modality for functional connectivity measurements

    Helping-Like Behaviour in Mice Towards Conspecifics Constrained Inside Tubes

    Get PDF
    Prosocial behaviour, including helping behaviour, benefits others. Recently, helping-like behaviour has been observed in rats, but whether it is oriented towards rescue, social contact with others, or other goals remains unclear. Therefore, we investigated whether helping-like behaviour could be observed in mice similar to that in rats. Because mice are social animals widely used in neuroscience, the discovery of helping-like behaviour in mice would be valuable in clarifying the psychological and biological mechanisms underlying pro-sociability. We constrained mice inside tubes. Subject mice were allowed to move freely in cages with tubes containing constrained conspecifics. The subject mice released both cagemates and stranger mice but did not engage in opening empty tubes. Furthermore, the same behaviour was observed under aversive conditions and with anesthetised conspecifics. Interestingly, hungry mice opened the tubes containing food before engaging in tube-opening behaviour to free constrained conspecifics. Mice showed equal preferences for constrained and freely moving conspecifics. We demonstrated for the first time that mice show tube-opening behaviour. Furthermore, we partly clarified the purpose and motivation of this behaviour. An effective mouse model for helping-like behaviour would facilitate research on the mechanisms underlying prosocial behaviour

    Attenuated Sensory Deprivation-induced Changes of Parvalbumin Neuron Density in the Barrel Cortex of FcγRllB-deficient Mice

    Get PDF
    Recent studies have demonstrated the important role of immune molecules in the development of neuronal circuitry and synaptic plasticity. We have detected the presence of FcγRllB protein in parvalbumin- containing inhibitory interneurons (PV neurons). In the present study, we examined the appearance of PV neurons in the barrel cortex and the effect of sensory deprivation in FcγRllB-deficient mice (FcγRllB-/-) and wild-type mice. There was no substantial difference in the appearance of PV neurons in the developing barrel cortex between FcγRllB-/- and wild-type mice. Sensory deprivation from immediately after birth (P0) or P7 to P12-P14 induced an increase in PV neurons. In contrast, sensory deprivation from P7 or P14 to P28, but not from P21 to P28, decreased PV neurons in wild-type mice. However, sensory deprivation from P0 or P7 to P12-P14 did not increase PV neurons and sensory deprivation from P7 or P14 to P28 did not decrease or only modestly decreased PV neurons in FcγRllB-/- mice. The results indicate that expression of PV is regulated by sensory experience and the second and third postnatal weeks are a sensitive period for sensory deprivation, and suggest that FcγRllB contributes to sensory experience-regulated expression of PV

    Layer-specific expression of extracellular matrix molecules in the mouse somatosensory and piriform cortices

    Get PDF
    In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability

    Regional heritability mapping identifies several novel loci (STAT4, ULK4, and KCNH5) for primary biliary cholangitis in the Japanese population

    Get PDF
    原発性胆汁性胆管炎の新たな遺伝要因を同定 --ヒト全ゲノム領域へのRHM法による世界初の成果--. 京都大学プレスリリース. 2021-04-09.While the advent of GWAS more than a decade ago has ushered in remarkable advances in our understanding of complex traits, the limitations of single-SNP analysis have also led to the development of several other approaches. Simulation studies have shown that the regional heritability mapping (RHM) method, which makes use of multiple adjacent SNPs jointly to estimate the genetic effect of a given region of the genome, generally has higher detection power than single-SNP GWAS. However, thus far its use has been mostly limited to agricultural settings, and its potential for the discovery of new genes in human diseases is yet to be fully exploited. In this study, by applying the RHM method to primary biliary cholangitis (PBC) in the Japanese population, we identified three novel loci (STAT4, ULK4, and KCNH5) at the genome-wide significance level, two of which (ULK4 and KCNH5) have not been found associated with PBC in any population previously. Notably, these genes could not be detected by using conventional single-SNP GWAS, highlighting the potential of the RHM method for the detection of new susceptibility loci in human diseases. These findings thereby provide strong empirical evidence that RHM is an effective and practical complementary approach to GWAS in this context. Also, liver tissue mRNA microarray analysis revealed higher gene expression levels in ULK4 in PBC patients (P < 0.01). Lastly, we estimated the common SNP heritability of PBC in the Japanese population (0.210 ± 0.026)

    Real-Time Decoding for Fault-Tolerant Quantum Computing: Progress, Challenges and Outlook

    Full text link
    Quantum computing is poised to solve practically useful problems which are computationally intractable for classical supercomputers. However, the current generation of quantum computers are limited by errors that may only partially be mitigated by developing higher-quality qubits. Quantum error correction (QEC) will thus be necessary to ensure fault tolerance. QEC protects the logical information by cyclically measuring syndrome information about the errors. An essential part of QEC is the decoder, which uses the syndrome to compute the likely effect of the errors on the logical degrees of freedom and provide a tentative correction. The decoder must be accurate, fast enough to keep pace with the QEC cycle (e.g., on a microsecond timescale for superconducting qubits) and with hard real-time system integration to support logical operations. As such, real-time decoding is essential to realize fault-tolerant quantum computing and to achieve quantum advantage. In this work, we highlight some of the key challenges facing the implementation of real-time decoders while providing a succinct summary of the progress to-date. Furthermore, we lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding in the next few years. As the quantum hardware is anticipated to scale up, this perspective article will provide a guidance for researchers, focusing on the most pressing issues in real-time decoding and facilitating the development of solutions across quantum and computer science

    Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy

    Get PDF
    Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production

    A Case of Mediastinal Localized Malignant Pleural Mesothelioma Successfully Treated by Chemotherapy and Conversion Surgery

    Get PDF
    Localized malignant mesothelioma is a rare disease and little is known about its treatment strategy. We herein report a case of localized malignant pleural mesothelioma that had infiltrated into the anterior mediastinum, which was successfully treated using chemotherapy and conversion surgery. A 63-year-old man with a mediastinal tumor was referred to our hospital. Pathologic analysis of the biopsy specimen showed malignant mesothelioma. Significant tumor shrinkage by cisplatin and pemetrexed was observed and he underwent radical surgery via a median sternotomy. The patient has been disease free for 12 months

    Anti-stress effects of the hydroalcoholic extract of Rosa gallica officinalis in mice

    Get PDF
    Rosa gallica, a plant of the Rosa genus, has been used widely since the 13th century and is cultivated in many areas as a medicinal plant for the preparation of herbal medicines. However, details of the neuropsychological effects of R. gallica remain unclear; therefore we aimed to investigate the neuropsychological effects of a water-soluble extract of R. gallica in male C57BL/6N mice under normal conditions and under chronic stress. We administered a water-soluble extract of R. gallica to mice and performed a series of behavioral experiments to compare the treated animals with the untreated controls. No significant differences in activity level, anxiety-like behavior, depression-like behavior, body weight, and body temperature were observed between R. gallica-treated mice and control mice. However, in mice subjected to chronic stress, the observed decrease in activity was smaller in the R. gallica-treated mice than in the control mice. The oral administration of R. gallica did not affect the normal behavior of mice. However, when the mice were subjected to stress, R. gallica exerted an anti-stress effect. Therefore, R. gallica has potential as a medicinal plant for the purpose of stress prevention

    Comprehensive behavioral study of the effects of vanillin inhalation in mice

    Get PDF
    Vanillin is widely used in food and cosmetics, among other substances, for its sweet smell. However, the neuropsychological effects of vanillin inhalation have not been elucidated. In this study, we investigated the effect of vanillin inhalation on mouse behavior. First, we investigated whether the aroma of vanillin was attractive or repulsive for mice. Thereafter, the mice inhaled vanillin for 20 min before each test in a series of behavioral tests (elevated plus maze, open field, Y-maze, tail suspension, cotton bud biting, and Porsolt forced swim tests). In these tests, the mice showed a neutral response to vanillin. Mice that inhaled vanillin had a suppressed pain response in the hot plate test. In addition, the grip strength of the forelimbs of mice that inhaled vanillin was decreased. No significant differences were found between the mice inhaling vanillin and control mice in the open field, Y-maze, tail suspension, forced swimming, and aggression tests. These results show that vanillin inhalation has anti-nociceptive effects, similar to other routes of administration. The results also show that vanillin inhalation does not cause significant behavioral effects
    corecore