4,840 research outputs found
What can we learn from comparison between cuprates and He films ? : phase separation and fluctuating superfluidity
In the underdoped, overdoped, Zn-doped or stripe-forming regions of
high- cuprate superconductors (HTSC), the superfluid density
at shows universal correlations with . Similar
strong correlations exist between 2-dimensional superfluid density and
superfluid transition temperature in thin films of He in non-porous or
porous media, and He/He film adsorbed on porous media. Based on
analogy between HTSC and He film systems, we propose a model for cuprates
where: (1) the overdoped region is characterized by a phase separation similar
to He/He; and (2) pair (boson) formation and fluctuating
superconductivity occur at separate temperatures above in the
underdoped region.Comment: 8 pages, 5 figures. Invited paper presented at the third
international conference on stripes and high-Tc superconductivity
(STRIPE-2000), Sept. 25-30th, 2000, Rome, Italy. To be published in the
International Journal of Modern Physics
Magnetic Phase Diagram of the Hole-doped CaNaCuOCl Cuprate Superconductor
We report on the magnetic phase diagram of a hole-doped cuprate
CaNaCuOCl, which is free from buckling of CuO
planes, determined by muon spin rotation and relaxation. It is characterized by
a quasi-static spin glass-like phase over a range of sodium concentration
(), which is held between long range antiferromagnetic
(AF) phase () and superconducting phase where the system is
non-magnetic for . The obtained phase diagram qualitatively agrees
well with that commonly found for hole-doped high-\tc cuprates, strongly
suggesting that the incomplete suppression of the AF order for is an
essential feature of the hole-doped cuprates.Comment: 5 pages, submitted to Phys. Rev. Let
Superconducting Volume Fraction in Overdoped Regime of La_2-x_Sr_x_CuO_4_: Implication for Phase Separation from Magnetic-Susceptibility Measurement
We have grown a single crystal of La_2-x_Sr_x_CuO_4_ in which the Sr
concentration, x, continuously changes from 0.24 to 0.29 in the overdoped
regime and obtained many pieces of single crystals with different x values by
slicing the single crystal. From detailed measurements of the magnetic
susceptibility, chi, of each piece, it has been found that the absolute value
of chi at the measured lowest temperature 2 K, |chi_2K_|, on field cooling
rapidly decreases with increasing x as well as the superconducting (SC)
transition temperature. As the value of |chi_2K_| is regarded as corresponding
to the SC volume fraction in a sample, it has been concluded that a phase
separation into SC and normal-state regions occurs in a sample of
La_2-x_Sr_x_CuO_4_ in the overdoped regime.Comment: 4 pages, 3 figures, ver. 2 has been accepted in J. Phys. Soc. Jp
Inequivalent representations of commutator or anticommutator rings of field operators and their applications
Hamiltonian of a system in quantum field theory can give rise to infinitely
many partition functions which correspond to infinitely many inequivalent
representations of the canonical commutator or anticommutator rings of field
operators. This implies that the system can theoretically exist in infinitely
many Gibbs states. The system resides in the Gibbs state which corresponds to
its minimal Helmholtz free energy at a given range of the thermodynamic
variables. Individual inequivalent representations are associated with
different thermodynamic phases of the system. The BCS Hamiltonian of
superconductivity is chosen to be an explicit example for the demonstration of
the important role of inequivalent representations in practical applications.
Its analysis from the inequivalent representations' point of view has led to a
recognition of a novel type of the superconducting phase transition.Comment: 25 pages, 6 figure
Pyrolysis of brominated feedstock plastic in a fluidised bed reactor
Fire retarded high impact polystyrene has been pyrolysed using a fluidised bed reactor with a sand bed. The yield and composition of the products have been investigated in relation to fluidised bed temperature. The bromine distribution between the products and a detailed analysis of the oils using GC-FID/ECD, GC-MS, FT-ir, and size exclusion chromatography has been carried out. It was found that the majority of the bromine transfers to the pyrolysis oil and the antimony was detected in both the oil and the char. Oil made up over 89.9% of the pyrolysis products. Over 30% of the oil consisted of benzene, toluene, ethylbenzene, styrene and cumene. The pyrolysis gases were mainly hydrocarbons in the C1-C4 range but some HBr and Br2 was detected
Study of the in-plane magnetic penetration depth in the cuprate superconductor Ca_2-xNa_xCuO_2Cl_2: role of the apical sites
A study of the in-plane magnetic penetration depth \lambda_ab in a series of
the cuprate superconductors Ca_2-xNa_xCuO_2Cl_2 (Na-CCOC) with Na content
x=0.11, 0.12, 0.15, 0.18, and 0.19 is reported. The zero temperature values of
\lambda_ab(0) were obtained by means of the muon-spin rotation technique, as
well as from measurements of the intrinsic susceptibility \chi^int(0) by using
the procedure developed by Kanigel et al. [Phys.Rev.B 71, 224511 (2005)].
\lambda_ab at T=0K was found to increase with decreasing doping from
\lambda_ab(0)=316(19)nm for the x=0.19 sample to \lambda_ab(0)=430(26)nm for
the x=0.11 one. From a comparison of the present Na-CCOC data with those of
Bi2201 and La214 cuprate superconductors it is concluded that substitution of
the apical oxygen by chlorine decreases the coupling between the
superconducting CuO_2 planes, leading to an enhancement of the two-dimensional
properties of Na-CCOC.Comment: 8 pages, 7 figure
Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 LaCuO and LaSrCuO
This paper reports muon spin relaxation (MuSR) measurements of two single
crystals of the title high-Tc cuprate systems where static incommensurate
magnetism and superconductivity coexist. By zero-field MuSR measurements and
subsequent analyses with simulations, we show that (1) the maximum ordered Cu
moment size (0.36 Bohr magneton) and local spin structure are identical to
those in prototypical stripe spin systems with the 1/8 hole concentration; (2)
the static magnetism is confined to less than a half of the volume of the
sample, and (3) regions with static magnetism form nano-scale islands with the
size comparable to the in-plane superconducting coherence length. By
transverse-field MuSR measurements, we show that Tc of these systems is related
to the superfluid density, in the same way as observed in cuprate systems
without static magnetism. We discuss a heuristic model involving percolation of
these nanoscale islands with static magnetism as a possible picture to
reconcile heterogeneity found by the present MuSR study and long-range spin
correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail:
[email protected]
Photometry of VS0329+1250: A New, Short-Period SU Ursae Majoris Star
Time-resolved CCD photometry is presented of the recently-discovered (V~15 at
maximum light) eruptive variable star in Taurus, which we dub VS0329+1250. A
total of ~20 hr of data obtained over six nights reveals superhumps in the
light curves, confirming the star as a member of the SU UMa class of dwarf
novae. The superhumps recur with a mean period of 0.053394(7) days (76.89 min),
which represents the shortest superhump period known in a classical SU UMa
star. A quadratic fit to the timings of superhump maxima reveals that the
superhump period was increasing at a rate given by dP/dt ~ (2.1 +/- 0.8) x
10^{-5} over the course of our observations. An empirical relation between
orbital period and the absolute visual magnitude of dwarf novae at maximum
light, suggests that VS0329+1250 lies at a distance of ~1.2 +/- 0.2 kpc.Comment: V2 - The paper has been modified to incorporate the referee's
comments, and has now been accepted for publication in the PASP. The most
significant change is that we are now able to confirm that the superhump
period was increasing during the course of our observation
Metallic mean-field stripes, incommensurability and chemical potential in cuprates
We perform a systematic slave-boson mean-field analysis of the three-band
model for cuprates with first-principle parameters. Contrary to widespread
believe based on earlier mean-field computations low doping stripes have a
linear density close to 1/2 added hole per lattice constant. We find a
dimensional crossover from 1D to 2D at doping followed by a breaking
of particle-hole symmetry around doping 1/8 as doping increases. Our results
explain in a simple way the behavior of the chemical potential, the magnetic
incommensurability, and transport experiments as a function of doping. Bond
centered and site-centered stripes become degenerate for small overdoping.Comment: submitted to PR
- …