25 research outputs found
Geosmin synthase ges1 knock‐down by siRNA in the dikaryotic fungus Tricholoma vaccinum
Abstract Genetic manipulation for generating knock‐out experiments is essential in deciphering the precise function of a gene. However, dikaryotic fungi pose the inherent challenge of having two allelic versions of each gene, one in each nucleus. In addition, they often are slow‐growing and do not withstand protoplasting, which is why Agrobacterium tumefaciens ‐mediated transformation has been adapted. To obtain knock‐out strains, however, is not feasible with a mere deletion construct transformation and screening for deletions in both nuclear copies. Hence, a convenient method using chemically synthesized dicer substrate interfering RNA (DsiRNA) for posttranscriptional interference of targeted mRNA was developed, based on the fungal dicer/argonaute system inherent in fungi for sequence recognition and degradation. A proof‐of‐principle using this newly established method for knock‐down of the volatile geosmin is presented in the dikaryotic fungus Tricholoma vaccinum that is forming ectomycorrhizal symbiosis with spruce trees. The gene ges1 , a terpene synthase, was transcribed with a 50‐fold reduction in transcript levels in the knockdown strain. The volatile geosmin was slightly reduced, but not absent in the fungus carrying the knockdown construct pointing at low specificity in other terpene synthases known for that class of enzymes
Attraction pheromone of the benthic diatom Seminavis robusta : studies on structure-activity relationships
Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines
Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete Schizophyllum commune
Although many fungi are known to be able to perform bioweathering of rocks and minerals, little information is available concerning the role of basidiomycetes in this process. The wood-rotting basidiomycete Schizophyllum commune was investigated for its ability to degrade black slate, a rock rich in organic carbon. Mechanical pressure of hyphae and extracellular polymeric substances was investigated for biophysical weathering. A mixed ß1-3/ß1-6 glucan, likely schizophyllan that is well known from S. commune, could be identified on black slate surfaces. Secretion of siderophores and organic acids as biochemical weathering agents was shown. Both may contribute to biochemical weathering in addition to enzymatic functions. Previously, the exoenzyme laccase was believed to attack organic the matter within the black slate, thereby releasing metals from the rock. Here, overexpression of laccase showed enhanced dissolution of quartz phases by etching and pitting. At the same time, the formation of a new secondary mineral phase, whewellite, could be demonstrated. Hence, a more comprehensive understanding of biophysical as well as biochemical weathering by S. commune could be reached and unexpected mechanisms like quartz dissolution linked to shale degradation. © 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
Salt and Metal Tolerance Involves Formation of Guttation Droplets in Species of the Aspergillus versicolor Complex
Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones
Current Challenges in Plant Eco-Metabolomics
The relatively new research discipline of Eco-Metabolomics is the application of
metabolomics techniques to ecology with the aim to characterise biochemical interactions of
organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical
approach to measure many thousands of metabolites in different species, including plants and animals.
Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes
that are relevant at ecological scales. These include physiological, phenotypic and morphological
responses of plants and communities to environmental changes and also interactions with other
organisms. Traditionally, research in biochemistry and ecology comes from two different directions
and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic
processes in individuals at physiological and cellular scales. Generally, they take a bottom-up
approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies
usually focus on extrinsic processes acting upon organisms at population and community scales
and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a
transdisciplinary research discipline that links biochemistry and ecology and connects the distinct
spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical
interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss
related examples from other domains. We present recent developments and highlight advancements
in Eco-Metabolomics over the last decade from various angles. We further address the five key
challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature
extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools
and workflows. The presented solutions to these challenges will advance connecting the distinct
spatiotemporal scales and bridging biochemistry and ecology
Aquifer system and depth specific chemical patterns in fractured-rock groundwater from the Critical Zone revealed by untargeted LC-MS-based metabolomics
In the Earth's Critical Zone, water plays an essential role as a collector and transporter of metabolites and their transformation products. It is generally believed that the chemical profiles of groundwater are strongly impacted by land use. However, predictors for the effects of above-ground natural and anthropogenic activities on belowground chemistry are rare. We reasoned that comparing groundwater metabolomes from different land-use sites and depths can give insight into this coupling of above and below-ground processes in the Critical Zone. This study used an LC-MS-based untargeted metabolomic approach to identify links between groundwater metabolomes from monitoring wells in fractured carbonate-/siliciclastic alternations along a hillslope of the Hainich Critical Zone Exploratory (CZE) in Thuringia, Germany. Our results identify the land-use type, aquifer system, and sampling depth as critical factors determining the differences among groundwater metabolomes. We established five groundwater metabolic clusters and correlated these to the aquifer systems, hydrogeochemistry, and microbial community composition. Our untargeted metabolomic approach reveals the limited connectivity of groundwater chemical profiles with above-ground activities and illustrates how deep the input signals can travel
Interchenar Retrotransfer of Aureothin Intermediates in an Iterative Polyketide Synthase Module
The course of the enigmatic iterative use of a polyketide
synthase
module was deduced from targeted domain inactivation in the aureothin
assembly line. Mutational analyses revealed that the N-terminus of
AurA is not involved in the iteration process, ruling out an ACP–ACP
shuttle. Furthermore, an AurA(KS°, ACP°)–AurA(AT<sup>0</sup>) heterodimer proved to be nonfunctional, whereas aureothin
production was restored in a Δ<i>aurA</i> mutant complemented
with AurA(KS°)–AurA(ACP°). This finding supports
a model according to which the ACP-bound polyketide intermediate is
transferred back to the KS domain on the opposite PKS strand
The synthesis of N,1,4-tri(alkoxy-hydroxybenzyl)-1,4-diazepane-amines: investigations on reaction characteristics and mechanism
1,4-Diazepane-6-amine (DAZA) can be alkylated with three 2-hydroxybenzyl pendant arms, resulting in hexadentate chelators suitable for coordination of radiometals like 68Ga. These chelators, N,1,4-tri(alkoxy-2-hydroxybenzyl)-DAZA, can be produced via a one-pot synthesis, with the first step being a carbonyl amine condensation of DAZA with two respective 4-alkoxy-2-hydroxybenzaldehydes, followed by reductive amination with sodium borohydride. While the first step of this reaction is predictable, the subsequent reductive amination can result in either mono-, di- or tri(alkoxy-hydroxybenzyl)-DAZA compounds. Seeking to identify dependencies that might allow a specific reaction control towards the formation of either of the three possible products, and particularly towards the favoured trialkylated DAZA compounds, a variety of synthesis trials were performed. Additionally, computational methods were employed to evaluate the underlying reaction mechanism. Synthesis trials verified that the trialkylated DAZA compounds are formed via direct reductive amination of the dialkylated DAZA compounds. Subsequently, a synthetic method was established, leading to an increase in the percentage of the trialkylated DAZA compounds, which allowed the successful isolation of those hexadentate chelators. Additionally, an alternative pathway proceeding via aminal C–N bond insertion of an attacking third carbonyl moiety was evaluated by means of quantum chemical calculations but so far remains entirely hypothetical
Recommended from our members
Microbial degradation and assimilation of veratric acid in oxic and anoxic groundwaters.
Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats