60 research outputs found

    Molecular structure of the 8.0 kDa subunit of cytochrome-c reductase from potato and its Δψ-dependent import into isolated mitochondria

    Get PDF
    AbstractThe cytochrome-c reductase (EC 1.10.2.2) of the mitochondrial respiratory chain couples electron transport from ubiquinol to cytochrome c with proton translocation across the inner mitochondrial membrane. The enzyme from potato was shown to be composed of 10 subunits. Isolation and characterization of cDNA clones for the second smallest subunit reveal an open reading frame of 216 bp encoding a protein of 8.0 kDa. The protein exhibits similarities to a 7.2/7.3 kDa subunit of cytochrome-c reductase from bovine and yeast, that is localized on the intermembrane space side of the enzyme complex. It also shows similarity to a previously unidentified 7.8 kDa protein of cytochrome-c reductase from Euglena. The potato 8.0 kDa protein has a segmental structure, as its sequence can be devided into four parts, each comprising a central Arg-(Xaa)5-Val motif. N-terminal sequencing of the mature 8.0 kDa protein indicates the absence of a cleavable mitochondrial targeting sequence. Import of the in vitro synthesized 8.0 kDa protein into isolated potato mitochondria confirms the lack of a presequence and reveals a dependence of the transport on the membrane potatial Δψ across the inner mitochondrial membrane. These features are unique among the intermembrane space proteins known so far

    Blue native DIGE as a tool for comparative analyses of protein complexes

    Get PDF
    Differential gel electrophoresis (DIGE) is based on pre-labeling of different protein fractions and their subsequent co-electrophoresis in a single gel. Cyanine based "CyDye DIGE Fluor minimal dyes" are used for the labeling reaction and 2D IEF/SDS PAGE is the preferential electrophoresis system for protein separation. The DIGE technology allows elimination of inconsistencies based on gel to gel variations and furthermore allows exact quantification of proteins separated by gel electrophoresis. Here we report applications of the DIGE technology in combination with another 2D gel system, Blue native/SDS PAGE. "Blue native DIGE" offers (i) systematic and quantitative comparison of protein complexes of related protein fractions, (ii) structural investigation of protein complexes, (iii) assignment of protein complexes to subcellular fractions like organelles and (iv) electrophoretic mapping of isoforms of subunits of protein complexes with respect to a larger proteome. The potential of "Blue native DIGE" is illustrated by analysis of organellar fractions from the plant Arabidopsis thaliana and the alga Polytomella. Use of the DIGE technology for topological investigations is discussed

    New insights into the co-evolution of cytochrome c reductase and the mitochondrial processing peptidase

    Get PDF
    The mitochondrial processing peptidase (MPP) is a heterodimeric enzyme that forms part of the cytochrome c reductase complex from higher plants. Mitochondria from mammals and yeast contain two homologous enzymes: (i) an active MPP within the mitochondrial matrix and (ii) an inactive MPP within the cytochrome c reductase complex. To elucidate the evolution of MPP, the cytochrome c reductase complexes from lower plants were isolated and tested for processing activity. Mitochondria were prepared from the staghorn fern Platycerium bifurcatum, from the horsetail Equisetum arvense, and from the colorless algae Polytomella, and cytochrome c reductase complexes were purified by a micro-isolation procedure based on Blue-native polyacrylamide gel electrophoresis and electroelution. This is the first report on the subunit composition of a respiratory enzyme complex from a fern or a horsetail. The cytochrome c reductase complexes from P. bifurcatum and E. arvense are shown to efficiently process mitochondrial precursor proteins, whereas the enzyme complex from Polytomella lacks proteolytic activity. An evolutionary model is suggested that assumes a correlation between the presence of an active MPP within the cytochrome c reductase complex and the occurrence of chloroplasts

    Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants

    Get PDF
    Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The translocase of the outer mitochondrial membrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine different subunits. This publication is the first report on the preparation of the TOM complex from plant mitochondria. The protein complex from potato was purified by (a) blue native polyacrylamide gel electrophoresis and (b) by immunoaffinity chromatography. On blue native gels, the potato TOM complex runs close to cytochrome c oxidase at 230 kDa and hence only comprises about half of the size of fungal TOM complexes. Analysis of the TOM complex from potato by SDS-polyacrylamide gel electrophoresis allows separation of seven different subunits of 70, 36, 23, 9, 8, 7, and 6 kDa. The 23-kDa protein is identical to the previously characterized potato TOM20 receptor, as shown by in vitro assembly of this protein into the 230kDa complex, by immunoblotting and by direct protein sequencing. Partial amino acid sequence data of the other subunits allowed us to identify sequence similarity between the 36-kDa protein and fungal TOM40. Sequence analysis of cDNAs encoding the 7-kDa protein revealed significant sequence hornology of this protein to TOM7 from yeast. However, potato TOM7 has a N-terminal extension, which is very rich in basic amino acids. Counterparts to the TOM22 and TOM37 proteins from yeast seem to be absent in the potato TOM complex, whereas an additional low molecular mass subunit occurs. Functional implications of these findings are discussed

    CMS Forward-Backward MSGC milestone

    Get PDF
    The CMS MF1 milestone was set in order to evaluate system aspects of the CMS forward-backward MSGC tracker, to check the design and feasibility of mass production and to set up assembly and test procedures. We describe the construction and the experience gained with the operation of a system of 38 MSGC detectors assembled in six multi-substrate detector modules corresponding to the geometry of the forward-backward MSGC tracker in CMS. These modules were equipped with MSGCs mounted side by side, forming a continuous detector surface of about 0.2 m2. Different designs were tried for these modules. The problems encountered are presented with the proposed solutions. Operation conditions for the 38 MSGCs are reported from an exposure to a muon beam at the CERN SPS. Gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with the detection efficiency, the spatial resolution, alignment and edge studies

    Antimicrobial susceptibility patterns and characterization of clinical isolates of Staphylococcus aureus in KwaZulu-Natal province, South Africa

    Get PDF
    BACKGROUND: Antimicrobial resistance of Staphylococcus aureus especially methicillin-resistant S. aureus (MRSA) continues to be a problem for clinicians worldwide. However, few data on the antibiotic susceptibility patterns of S. aureus isolates in South Africa have been reported and the prevalence of MRSA in the KwaZulu-Natal (KZN) province is unknown. In addition, information on the characterization of S. aureus in this province is unavailable. This study investigated the susceptibility pattern of 227 S. aureus isolates from the KZN province, South Africa. In addition, characterization of methicillin-sensitive S. aureus (MSSA) and MRSA are reported in this survey. METHODS: The in-vitro activities of 20 antibiotics against 227 consecutive non-duplicate S. aureus isolates from clinical samples in KZN province, South Africa were determined by the disk-diffusion technique. Isolates resistant to oxacillin and mupirocin were confirmed by PCR detection of the mecA and mup genes respectively. PCR-RFLP of the coagulase gene was employed in the characterization of MSSA and MRSA. RESULTS: All the isolates were susceptible to vancomycin, teicoplanin and fusidic acid, and 26.9% of isolates studied were confirmed as MRSA. More than 80% of MRSA were resistant to at least four classes of antibiotics and isolates grouped in antibiotype 8 appears to be widespread in the province. The MSSA were also susceptible to streptomycin, neomycin and minocycline, while less than 1% was resistant to chloramphenicol, ciprofloxacin, rifampicin and mupirocin. The inducible MLS(B )phenotype was detected in 10.8% of MSSA and 82% of MRSA respectively, and one MSSA and one MRSA exhibited high-level resistance to mupirocin. There was good correlation between antibiotyping and PCR-RFLP of the coagulase gene in the characterization of MRSA in antibiotypes 1, 5 and 12. CONCLUSION: In view of the high resistance rates of MRSA to gentamicin, erythromycin, clindamycin, rifampicin and trimethoprim, treatment of MRSA infections in this province with these antibacterial agents would be unreliable. There is an emerging trend of mupirocin resistance among S. aureus isolates in the province. PCR-RFLP of the coagulase gene was able to distinguish MSSA from MRSA and offers an attractive option to be considered in the rapid epidemiological analysis of S. aureus in South Africa. Continuous surveillance on resistance patterns and characterization of S. aureus in understanding new and emerging trends in South Africa is of utmost importance

    The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array:Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    corecore