10 research outputs found
Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease
In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children
Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management
Atrioventricular block is classified as congeni-
tal if diagnosed in utero, at birth, or within the first
month of life. The pathophysiological process is believed
to be due to immune-mediated injury of the conduction
system, which occurs as a result of transplacental pas-
sage of maternal anti-SSA/Ro-SSB/La antibodies.
Childhood atrioventricular block is therefore diagnosed
between the first month and the 18th year of life.
Genetic variants in multiple genes have been described
to date in the pathogenesis of inherited progressive car-
diac conduction disorders. Indications and techniques of
cardiac pacing have also evolved to allow safe perma-
nent cardiac pacing in almost all patients, including
those with structural heart abnormalities
Controversies in arrhythmias and arrhythmic syndromes of active children and young adults
Important advances in the diagnosis and therapy of various arrhythmic disorders have been made in the last two decades. These, in turn, have necessitated a re-examination of current practice guidelines, with a view to deciding on optimal management of young patients with suspected or proven arrhythmia syndromes and in assessing the risk of adverse arrhythmic events during sport participation. There has also been a concomitant emphasis on identifying individuals at risk by nationwide screening programs using the ECG and excluding them from competitive sport. This review identifies some of these issues, looks at the data critically and offers some suggestions for current care and future research