14 research outputs found

    Powder Process with Photoresist for Ceramic Electronic Components

    Get PDF
    This chapter proposed a patterning process for ceramic electronic components. The proposed process uses a photoresist, and it is combined with the photolithography process and the printing process. By using both technologies, a high-aspect-ratio and fine conductive pattern is achieved because the patterned photoresist hold the filling paste during the dry process. Moreover, a different material pattern in a ceramic sheet can be formed simultaneously when the photoresist covers on the ceramic sheet with a through-hole pattern. The examples of the patterning process and the fabricated pattern are shown. The fine conductive pattern was formed by using a liquid photoresist, and the line width and the thickness were 10.3 and 1.85 μm, respectively. In the ceramic pattern, the conductive paste and low-temperature co-fired ceramic (LTCC) slurry were filled to the ferrite sheet. As a result, the ceramic sheet that had three different materials was achieved. It realizes the miniature ceramic inductor suppressing the minor loop. However, the photoresist process showed some problems with the fine pattern and the different material pattern. These problems are solved by adjusting the viscosity and the composite ratio of the slurry. The optimization of the type and thickness of the photoresist is required

    Milliwatt-Level Electromagnetic Induction-Type MEMS Air Turbine Generator

    Get PDF
    In this chapter, an electromagnetic induction-type MEMS air turbine generator that combined with the MEMS technology and the multilayer ceramic technology is proposed. Three types of MEMS air turbine generators that included the different bearing systems, shape of the rotor and shape of the magnetic circuits are discussed to achieve the high output power. In the MEMS air turbine, the purpose is to achieve high-speed rotational motion. As a result of the comparison between the different structures, a rim-type rotor and a miniature ball bearing system showed the high rotational speed than a flat-type rotor and a fluid dynamic bearing system. The maximum rotational speed of the fabricated air turbine was 290,135 rpm. Moreover, it is important to introduce the magnetic flux to the magnetic circuit. By the multilayer ceramic technology, the three-dimensional coil in miniature monolithic structure was fabricated. The magnetic core that was designed to introduce the magnetic flux showed the low magnetic flux loss. The fabricated MEMS air turbine and the multilayer ceramic magnetic circuit were combined, and the miniature electromagnetic induction-type generator was achieved. The output power was 2.41 mVA, when the load resistance and the output voltage were 8 Ω and 139 mV, respectively

    Gait Generation of Multilegged Robots by using Hardware Artificial Neural Networks

    Get PDF
    Living organisms can act autonomously because biological neural networks process the environmental information in continuous time. Therefore, living organisms have inspired many applications of autonomous control to small-sized robots. In this chapter, a small-sized robot is controlled by a hardware artificial neural network (ANN) without software programs. Previously, the authors constructed a multilegged walking robot. The link mechanism of the limbs was designed to reduce the number of actuators. The current paper describes the basic characteristics of hardware ANNs that generate the gait for multilegged robots. The pulses emitted by the hardware ANN generate oscillating patterns of electrical activity. The pulse-type hardware ANN model has the basic features of a class II neuron model, which behaves like a resonator. Thus, gait generation by the hardware ANNs mimics the synchronization phenomena in biological neural networks. Consequently, our constructed hardware ANNs can generate multilegged robot gaits without requiring software programs

    Biomimetics Micro Robot with Active Hardware Neural Networks Locomotion Control and Insect-Like Switching Behaviour

    No full text
    In this paper, we presented the 4.0, 2.7, 2.5 mm, width, length, height size biomimetics micro robot system which was inspired by insects. The micro robot system was made from silicon wafer fabricated by micro electro mechanical systems (MEMS) technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the insect-like switching behaviour. In addition, we constructed the active hardware neural networks (HNN) by analogue CMOS circuits as a locomotion controlling system. The HNN utilized the pulse-type hardware neuron model (P-HNM) as a basic component. The HNN outputs the driving pulses using synchronization phenomena such as biological neural networks. The driving pulses can operate the actuators of the biomimetics micro robot directly. Therefore, the HNN realized the robot control without using any software programs or A/D converters. The micro robot emulated the locomotion method and the neural networks of an insect with rotary type actuators, link mechanisms and HNN. The micro robot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 26.4 mm/min when the step width was 0.88 mm

    Miniaturized Rotary Actuators Using Shape Memory Alloy for Insect-Type MEMS Microrobot

    No full text
    Although several types of locomotive microrobots have been developed, most of them have difficulty locomoting on uneven surfaces. Thus, we have been focused on microrobots that can locomote using step patterns. We are studying insect-type microrobot systems. The locomotion of the microrobot is generated by rotational movements of the shape memory alloy-type rotary actuator. In addition, we have constructed artificial neural networks by using analog integrated circuit (IC) technology. The artificial neural networks can output the driving waveform without using software programs. The shape memory alloy-type rotary actuator and the artificial neural networks are constructed with silicon wafers; they can be integrated by using micro-electromechanical system (MEMS) technology. As a result, the MEMS microrobot system can locomote using step patterns. The insect-type MEMS microrobot system is 0.079 g in weight and less than 5.0 mm in size, and its locomotion speed is 2 mm/min. The locomotion speed is slow because the heat of the shape memory alloy conducts to the mechanical parts of the MEMS microrobot. In this paper, we discuss a new rotary actuator compared with the previous model and show the continuous rotation of the proposed rotary actuator

    Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    No full text
    In this paper, we will propose the neural networks integrated circuit (NNIC) which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS) microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K
    corecore