46 research outputs found

    CDC25Bの細胞内局在制御機構に関する研究

    Get PDF
    取得学位:博士(理学),学位授与番号:博甲第621号,学位授与年月日:平成16年3月25日,学位授与年:200

    Immobilization of Photoelectric Dye on the Polyethylene FilmSurface

    Get PDF
    PE film was treated with fuming nitric acid at 80℃ for 20 min, resulting in introduction of COOH moieties on the film surface. The COOH’s were reacted with ethylenediamine, whose amino groups were used for linking with (2-[4-(dibutylamino)phenyl]ethenyl)-3-carboxy-methylbenzo-thiazolium, photoelectric dye (NK-5962), which absorbs visible light and converts the photon energy to electric potentials. The dye molecules were immobilized on the PE film surface and they were able to stimulate chick retinal tissues on incidence of visible light. These facts hopefully lead to development of an artificial retinal prosthesis

    Amino acids C-terminal to the 14-3-3 binding motif in CDC25B affect the efficiency of 14-3-3 binding

    Get PDF
    金沢大学医薬保健研究域薬学系The phospho-site adapter protein 14-3-3 binds to target proteins at amino acid sequences matching the consensus motif Arg-X-X-Ser/Thr-X-Pro, where the serine or threonine residue is phosphorylated and X is any amino acid. The dual-specificity phosphatase CDC25B, which is involved in cell cycle regulation, contains five 14-3-3 binding motifs, but 14-3-3 preferentially binds to the motif at Ser309 in CDC25B1 (or Ser323 in CDC25B3). In the present study, we demonstrate that amino acid residues C-terminal to the 14-3-3 binding motif strongly affect the efficiency of 14-3-3 binding. Alanine substitutions at residues downstream of the Ser309 motif dramatically reduced 14-3-3 binding, although phosphorylation of Ser309 was unaffected. We also observed that binding of endogenous 14-3-3 to mutant CDC25B occurred less efficiently than to the wild type. Mutants to which 14-3-3 cannot bind efficiently tend to be located in the nucleus, although not as specifically as the alanine substitution mutant of Ser309. These results indicate that amino acid sequences C-terminal to the consensus binding site have an important role in the efficient binding of 14-3-3 to at least CDC25B, which may partly explain why some consensus sequences are inactive as 14-3-3 binding sites. © 2006 The Japanese Biochemical Society

    Dysfunction of CD8+PD-1+T cells in type 2 diabetes caused by the impairment of metabolism-immune axis

    Get PDF
    The metabolic changes and dysfunction in CD8+T cells may be involved in tumor progression and susceptibility to virus infection in type 2 diabetes (T2D). In C57BL/6JJcl mice fed with high fat-high sucrose chow (HFS), multifunctionality of CD8+splenic and tumor-infiltrating lymphocytes (TILs) was impaired and associated with enhanced tumor growth, which were inhibited by metformin. In CD8+splenic T cells from the HFS mice, glycolysis/basal respiration ratio was significantly reduced and reversed by metformin. In the patients with T2D (DM), multifunctionality of circulating CD8+PD-1+T cells stimulated with PMA/ionomycin as well as with HLA-A*24:02 CMV peptide was dampened, while metformin recovered multifunctionality. Both glycolysis and basal respiration were reduced in DM, and glycolysis was increased by metformin. The disturbance of the link between metabolism and immune function in CD8+PD-1+T cells in T2D was proved by recovery of antigen-specific and non-specific cytokine production via metformin-mediated increase in glycolytic activity

    Stress-activated mitogen-activated protein kinases c-Jun NH 2-terminal kinase and p38 target Cdc25B for degradation

    Get PDF
    金沢大学医薬保健研究域薬学系Cdc25 dual specificity phosphatases positively regulate the cell cycle by activating cyclin-dependent kinase/cyclin complexes. Of the three mammalian Cdc25 isoforms, Cdc25A is phosphorylated by genotoxic stress-activated Chk1 or Chk2, which triggers its SCFβ-TrCP-mediated degradation. However, the roles of Cdc25B and Cdc25C in cell stress checkpoints remain inconclusive. We herein report that c-Jun NH2-terminal kinase (JNK) induces the degradation of Cdc25B. Nongenotoxic stress induced by anisomycin caused rapid degradation of Cdc25B as well as Cdc25A. Cdc25B degradation was dependent mainly on JNK and partially on p38 mitogen-activated protein kinase (p38). Accordingly, cotransfection with JNK1, JNK2, or p38 destabilized Cdc25B. In vitro kinase assays and site-directed mutagenesis experiments revealed that the critical JNK and p38 phosphorylation site in Cdc25B was Ser101. Cdc25B with Ser101 mutated to alanine was refractory to anisomycin-induced degradation, and cells expressing such mutant Cdc25B proteins were able to override the anisomycin-induced G2 arrest. These results highlight the importance of a novel JNK/p38-Cdc25B axis for a nongenotoxic stress-induced cell cycle checkpoint. ©2009 American Association for Cancer Research

    Binding of 14-3-3β but not 14-3-3σ controls the cytoplasmic localization of CDC25B: Binding site preferences of 14-3-3 subtypes and the subcellular localization of CDC25B

    Get PDF
    The dual specificity phosphatase CDC25B positively controls the G2-M transition by activating CDK1/cyclin B. The binding of 14-3-3 to CDC25B has been shown to regulate the subcellular redistribution of CDC25B from the nucleus to the cytoplasm and may be correlated with the G2 checkpoint. We used a FLAG-tagged version of CDC25B to study the differences among the binding sites for the 14-3-3 subtypes, 14-3-3β, 14-3-3ε and 14-3-3σ, and the relationship between subtype binding and the subcellular localization of CDC25B. All three subtypes were found to bind to CDC25B. Site-directed mutagenesis studies revealed that 14-3-3β bound exclusively near serine-309 of CDC25B1, which is within a potential consensus motif for 14-3-3 binding. By contrast, 14-3-3σ bound preferentially to a site around serine-216, and the presence of serine-137 and -309 enhanced the binding. In addition to these binding-site differences, we found that the binding of 14-3-3β drove CDC25B to the cytoplasm and that mutation of serine-309 to alanine completely abolished the cytoplasmic localization of CDC25B. However, co-expression of 14-3-3σ and CDC25B did not affect the subeellular localization of CDC25B. Furthermore, serine-309 of CDC25B was sufficient to produce its cytoplasmic distribution with co-expression of 14-3-3β, even when other putative 14-3-3 binding sites were mutated. 14-3-3ε resembled 14-3-3β with regard to its binding to CDC25B and the control of CDC25B subcellujar localization. The results of the present study indicite that two 14-3-3 subtypes can control the subcellular localization of CDC25B by binding to a specific site and that 14-3-3σ has effects on CDC25B other than the control of its subcellular localization

    SCFβTrCP mediates stress-activated MAPK-induced Cdc25B degradation

    Get PDF
    Cdc25A, which is one of the three mammalian CDK-activating Cdc25 protein phosphatases (Cdc25A, B and C), is degraded through SCFβTrCP-mediated ubiquitylation following genomic insult; however, the regulation of the stability of the other two Cdc25 proteins is not well understood. Previously, we showed that Cdc25B is primarily degraded by cellular stresses that activate stress-activated MAPKs, such as Jun NH2-terminal kinase (JNK) and p38. Here, we report that Cdc25B was ubiquitylated by SCFβTrCP E3 ligase upon phosphorylation at two Ser residues in the βTrCP-binding-motif-like sequence D94AGLCMDSPSP104. Point mutation of these Ser residues to alanine (Ala) abolished the JNK-induced ubiquitylation by SCFβTrCP, and point mutation of DAG to AAG or DAA eradicated both βTrCP binding and ubiquitylation. Further analysis of the mode of βTrCP binding to this region revealed that the PEST-like sequence from E82SS to D94AG is crucially involved in both the βTrCP binding and ubiquitylation of Cdc25B. Furthermore, the phospho-mimetic replacement of all 10 Ser residues in the E82SS to SPSP104 region with Asp resulted in βTrCP binding. Collectively, these results indicate that stress-induced Cdc25B ubiquitylation by SCFβTrCP requires the phosphorylation of S101PS103P in the βTrCP-binding-motif-like and adjacent PEST-like sequences. © 2011. Published by The Company of Biologists Ltd

    Novel Urinary Glycan Biomarkers Predict Cardiovascular Events in Patients With Type 2 Diabetes: A Multicenter Prospective Study With 5-Year Follow Up (U-CARE Study 2)

    Get PDF
    Background: Although various biomarkers predict cardiovascular event (CVE) in patients with diabetes, the relationship of urinary glycan profile with CVE in patients with diabetes remains unclear. Methods: Among 680 patients with type 2 diabetes, we examined the baseline urinary glycan signals binding to 45 lectins with different specificities. Primary outcome was defined as CVE including cardiovascular disease, stroke, and peripheral arterial disease. Results: During approximately a 5-year follow-up period, 62 patients reached the endpoint. Cox proportional hazards analysis revealed that urinary glycan signals binding to two lectins were significantly associated with the outcome after adjustment for known indicators of CVE and for false discovery rate, as well as increased model fitness. Hazard ratios for these lectins (+1 SD for the glycan index) were UDA (recognizing glycan: mixture of Man5 to Man9): 1.78 (95% CI: 1.24-2.55, P = 0.002) and Calsepa [High-Man (Man2-6)]: 1.56 (1.19-2.04, P = 0.001). Common glycan binding to these lectins was high-mannose type of N-glycans. Moreover, adding glycan index for UDA to a model including known confounders improved the outcome prediction [Difference of Harrel's C-index: 0.028 (95% CI: 0.001-0.055, P = 0.044), net reclassification improvement at 5-year risk increased by 0.368 (0.045-0.692, P = 0.026), and the Akaike information criterion and Bayesian information criterion decreased from 725.7 to 716.5, and 761.8 to 757.2, respectively]. Conclusion: The urinary excretion of high-mannose glycan may be a valuable biomarker for improving prediction of CVE in patients with type 2 diabetes, and provides the rationale to explore the mechanism underlying abnormal N-glycosylation occurring in patients with diabetes at higher risk of CVE

    Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3)

    Get PDF
    Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not. Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year. Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR. Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525
    corecore