149 research outputs found

    Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter

    Get PDF
    Boron neutron capture therapy (BNCT) is an emerging radiation treatment modality, exhibiting the potential to selectively destroy cancer cells. Currently, BNCT is conducted using a nuclear reactor. However, the future trend is to move toward an accelerator-based system for use in hospital environments. A typical BNCT radiation field has several different types of radiation. The beam quality should be quantified to accurately determine the dose to be delivered to the target. This study utilized a tissue equivalent proportional counter (TEPC) to measure microdosimetric and macrodosimetric quantities of an accelerator-based neutron source. The micro- and macro-dosimetric quantities measured with the TEPC were compared with those obtained via the the particle and heavy ion transport code system (PHITS) Monte Carlo simulation. The absorbed dose from events >20 keV/μm measured free in air for a 1-h irradiation was calculated as 1.31 ± 0.02 Gy. The simulated result was 1.41 ± 0.07 Gy. The measured and calculated values exhibit good agreement. The relative biological effectiveness (RBE) that was evaluated from the measured microdosimetric spectrum was calculated as 3.7 ± 0.02, similar to the simulated value of 3.8 ± 0.1. These results showed the PHITS Monte Carlo simulation can simulate both micro- and macro-dosimetric quantities accurately. The RBE was calculated using a single-response function, and the results were compared with those of several other institutes that used a similar method. However, care must be taken when using such a single-response function for clinical application, as it is only valid for low doses. For clinical dose ranges (i.e., high doses), multievent distribution inside the target needs to be considered

    Cholesterol Protects Against Acute Stress-Induced T-Tubule Remodeling in Mouse Ventricular Myocytes

    Get PDF
    Efficient excitation-contraction coupling in ventricular myocytes depends critically on the presence of the t-tubular network. It has been recently demonstrated that cholesterol, a major component of the lipid bilayer, plays an important role in long-term maintenance of the integrity of t-tubular system although mechanistic understanding of underlying processes is essentially lacking. Accordingly, in this study we investigated the contribution of membrane cholesterol to t-tubule remodeling in response to acute hyposmotic stress. Experiments were performed using isolated left ventricular cardiomyocytes from adult mice. Depletion and restoration of membrane cholesterol was achieved by applying methyl-β-cyclodextrin (MβCD) and water soluble cholesterol (WSC), respectively, and t-tubule remodeling in response to acute hyposmotic stress was assessed using fluorescent dextran trapping assay and by measuring t-tubule dependent IK1 tail current (IK1,tail). The amount of dextran trapped in t-tubules sealed in response to stress was significantly increased when compared to control cells, and reintroduction of cholesterol to cells treated with MβCD restored the amount of trapped dextran to control values. Alternatively, application of WSC to normal cells significantly reduced the amount of trapped dextran further suggesting the protective effect of cholesterol. Importantly, modulation of membrane cholesterol (without osmotic stress) led to significant changes in various parameters of IK1, tail strongly suggesting significant but essentially hidden remodeling of t-tubules prior to osmotic stress. Results of this study demonstrate that modulation of the level of membrane cholesterol has significant effects on the susceptibility of cardiac t-tubules to acute hyposmotic stress

    Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy

    Get PDF
    Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM

    Assessing white matter microstructural changes in idiopathic normal pressure hydrocephalus using voxel-based R2* relaxometry analysis

    Get PDF
    BackgroundR2* relaxometry and quantitative susceptibility mapping can be combined to distinguish between microstructural changes and iron deposition in white matter. Here, we aimed to explore microstructural changes in the white matter associated with clinical presentations such as cognitive impairment in patients with idiopathic normal-pressure hydrocephalus (iNPH) using R2* relaxometry analysis in combination with quantitative susceptibility mapping.MethodsWe evaluated 16 patients clinically diagnosed with possible or probable iNPH and 18 matched healthy controls (HC) who were chosen based on similarity in age and sex. R2* and quantitative susceptibility mapping were compared using voxel-wise and atlas-based one-way analysis of covariance (ANCOVA). Finally, partial correlation analyses were performed to assess the relationship between R2* and clinical presentations.ResultsR2* was lower in some white matter regions, including the bilateral superior longitudinal fascicle and sagittal stratum, in the iNPH group compared to the HC group. The voxel-based quantitative susceptibility mapping results did not differ between the groups. The atlas-based group comparisons yielded negative mean susceptibility values in almost all brain regions, indicating no clear paramagnetic iron deposition in the white matter of any subject. R2* and cognitive performance scores between the left superior longitudinal fasciculus (SLF) and right sagittal stratum (SS) were positively correlated. In addition to that, R2* and gait disturbance scores between left SS were negatively correlated.ConclusionOur analysis highlights the microstructural changes without iron deposition in the SLF and SS, and their association with cognitive impairment and gait disturbance in patients with iNPH

    End-to-End Joint Target and Non-Target Speakers ASR

    Full text link
    This paper proposes a novel automatic speech recognition (ASR) system that can transcribe individual speaker's speech while identifying whether they are target or non-target speakers from multi-talker overlapped speech. Target-speaker ASR systems are a promising way to only transcribe a target speaker's speech by enrolling the target speaker's information. However, in conversational ASR applications, transcribing both the target speaker's speech and non-target speakers' ones is often required to understand interactive information. To naturally consider both target and non-target speakers in a single ASR model, our idea is to extend autoregressive modeling-based multi-talker ASR systems to utilize the enrollment speech of the target speaker. Our proposed ASR is performed by recursively generating both textual tokens and tokens that represent target or non-target speakers. Our experiments demonstrate the effectiveness of our proposed method.Comment: Accepted at Interspeech 202
    corecore