126 research outputs found

    Characterisation of Wnt/β-catenin signaling in rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilisation of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target

    Gene expression profile of AIDS-related Kaposi's sarcoma

    Get PDF
    BACKGROUND: Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. METHODS: In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. RESULTS: The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. CONCLUSION: The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

    Immunohistochemical, morphological and ultrastructural resemblance between dendritic cells and folliculo-stellate cells in normal human and rat anterior pituitaries

    Get PDF
    Immunolabeling of cryo-sections of human anterior pituitaries obtained at autopsy, and of cryo-sections of freshly prepared rat anterior pituitaries, with a panel of monoclonal antibodies against markers of the monocyte/dendritic cell/macrophage lineage, reveals in both species a characteristic pattern of immunopositive cells, among which many cells with dendritic phenotype are found. Cells characterized by marker expression of MHC-class II determinants and a dendritic morphology are present in both human and rat anterior pituitary. Markers characteristic of dendritic cells such as the L25 antigen and the OX62 antigen were present in anterior pituitaries from human and rat respectively. The population of MHC-class II expressing dendritic cells of the rat anterior pituitary is compared at the ultrastructural level with the folliculo-stellate cell population, which cell type has been previously characterized by its distinctive ultrastructure and immunopositivity for the S100 protein. Using immune-electron microscopy of rat anterior pituitaries fixed with periodate-lysine-paraformaldehyde, we were able to distinguish non-granulated cells expressing MHC-class II determinants, whereas no MHC-class II expression was found in the granulated endocrine cells. Using double immunolabeling of cryo-sections of these rat AP with 25 nm and 15 nm gold labels, we demonstrated an overlap between the populations of MHC-class II-expressing and S100 protein-expressing cells. Furthermore, MHC-class II-expressing and S100-positive cells showed ultrastructural characteristics that have been previously ascribed to folliculo-stellate cells. At the light microscopical level in the rat AP, a proportion of 10 to 20% of the S100-positive cells was found immunopositive for the MHC-class II marker OX6. In the hu

    HIV Tropism and Decreased Risk of Breast Cancer

    Get PDF
    During the first two decades of the U.S. AIDS epidemic, and unlike some malignancies, breast cancer risk was significantly lower for women with human immunodeficiency virus (HIV) infection compared to the general population. This deficit in HIV-associated breast cancer could not be attributed to differences in survival, immune deficiency, childbearing or other breast cancer risk factors. HIV infects mononuclear immune cells by binding to the CD4 molecule and to CCR5 or CXCR4 chemokine coreceptors. Neoplastic breast cells commonly express CXCR4 but not CCR5. In vitro, binding HIV envelope protein to CXCR4 has been shown to induce apoptosis of neoplastic breast cells. Based on these observations, we hypothesized that breast cancer risk would be lower among women with CXCR4-tropic HIV infection.We conducted a breast cancer nested case-control study among women who participated in the WIHS and HERS HIV cohort studies with longitudinally collected risk factor data and plasma. Cases were HIV-infected women (mean age 46 years) who had stored plasma collected within 24 months of breast cancer diagnosis and an HIV viral load≥500 copies/mL. Three HIV-infected control women, without breast cancer, were matched to each case based on age and plasma collection date. CXCR4-tropism was determined by a phenotypic tropism assay. Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer were estimated by exact conditional logistic regression. Two (9%) of 23 breast cancer cases had CXCR4-tropic HIV, compared to 19 (28%) of 69 matched controls. Breast cancer risk was significantly and independently reduced with CXCR4 tropism (adjusted odds ratio, 0.10, 95% CI 0.002-0.84) and with menopause (adjusted odds ratio, 0.08, 95% CI 0.001-0.83). Adjustment for CD4+ cell count, HIV viral load, and use of antiretroviral therapy did not attenuate the association between infection with CXCR4-tropic HIV and breast cancer.Low breast cancer risk with HIV is specifically linked to CXCR4-using variants of HIV. These variants are thought to exclusively bind to and signal through a receptor that is commonly expressed on hyperplastic and neoplastic breast duct cells. Additional studies are needed to confirm these observations and to understand how CXCR4 might reduce breast cancer risk

    DNA and histone deacetylases as targets for neuroblastoma treatment

    Get PDF
    Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most frequent solid extra cranial tumor in children and is a major cause of death from neoplasia in infancy. Still little improvement in therapeutic options has been made, requiring a need for the development of new therapies. In our laboratory, we address still unsettled questions, which of mechanisms of action of DNA-damaging drugs both currently use for treatment of human neuroblastomas (doxorubicin, cis-platin, cyclophosphamide and etoposide) and another anticancer agent decreasing growth of neuroblastomas in vitro, ellipticine, are predominant mechanism(s) responsible for their antitumor action in neuroblastoma cell lines in vitro. Because hypoxia frequently occurs in tumors and strongly correlates with advanced disease and poor outcome caused by chemoresistance, the effects of hypoxia on efficiencies and mechanisms of actions of these drugs in neuroblastomas are also investigated. Since the epigenetic structure of DNA and its lesions play a role in the origin of human neuroblastomas, pharmaceutical manipulation of the epigenome may offer other treatment options also for neuroblastomas. Therefore, the effects of histone deacetylase inhibitors on growth of neuroblastoma and combination of these compounds with doxorubicin, cis-platin, etoposide and ellipticine as well as mechanisms of such effects in human neuroblastona cell lines in vitro are also investigated. Such a study will increase our knowledge to explain the proper function of these drugs on the molecular level, which should be utilized for the development of new therapies for neuroblastomas

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV
    corecore