8 research outputs found

    Horizon-T Experiment Calibrations – MIP Signal from Scintillator and Glass Detectors

    Get PDF
    Horizon-T, a modern Extensive Air Showers (EAS) detector system, is constructed at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level in order to study in the energy range above 1016 eV coming from a wide range of zenith angles (0o - 85o). The detector includes eight charged particle detection points and a Vavilov-Cherenkov radiation detector. Each charged particle detector response is calibrated using single MIP (minimally ionizing particle) signal. The details of this calibration are provided in this article. This note is valid for data before March 2017 and will not be updated following any detector calibration and configuration changes as a large upgrade has been implemente

    Horizon-T Experiment Calibrations – MIP Signal from Scintillator and Glass Detectors

    No full text
    Horizon-T, a modern Extensive Air Showers (EAS) detector system, is constructed at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level in order to study in the energy range above 1016 eV coming from a wide range of zenith angles (0o - 85o). The detector includes eight charged particle detection points and a Vavilov-Cherenkov radiation detector. Each charged particle detector response is calibrated using single MIP (minimally ionizing particle) signal. The details of this calibration are provided in this article. This note is valid for data before March 2017 and will not be updated following any detector calibration and configuration changes as a large upgrade has been implemente

    Horizon-T Experiment Upgrade and Calibration of New Detection Points

    No full text
    In March of 2018, after the completion of the Physics Run 2, an upgrade has been installed at an innovative detector system Horizon-T, with the upgraded version now called Horizon-10T. It was constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. After this upgrade, the detector consists of ten charged particle detection points separated by the distance up to 1.3 kilometer as well as optical detector to view the Vavilov-Cherenkov light from the EAS. Each detector connects to the Data Acquisition system via cables. The calibration of the time delay for each cable including newly installed ones and the signal attenuation is provided in this article as well as the description of the newly installed detection points and their MIP response values

    Horizon-T Experiment Upgrade and Calibration of New Detection Points

    No full text
    In March of 2018, after the completion of the Physics Run 2, an upgrade has been installed at an innovative detector system Horizon-T, with the upgraded version now called Horizon-10T. It was constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. After this upgrade, the detector consists of ten charged particle detection points separated by the distance up to 1.3 kilometer as well as optical detector to view the Vavilov-Cherenkov light from the EAS. Each detector connects to the Data Acquisition system via cables. The calibration of the time delay for each cable including newly installed ones and the signal attenuation is provided in this article as well as the description of the newly installed detection points and their MIP response values

    Extensive air showers event reconstruction using spatial and temporary particle distribution at Horizon-T experiment

    No full text
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. A newly completed (Oct. 2016) detector system of Extensive Air Showers (EAS) called Horizon-T (HT) is a part of Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences, which is located 32 km from Almaty at the altitude of 3340 meters above the sea level. Horizon-T is constructed to study Extensive Air Showers in the energy range above ~1016 eV coming from a wide range of zenith angles (0° - 85°). The system currently has eight working and two under construction charged particle detection points separated by the distance more than a kilometer. The ability to record each detector response with accuracy of 2 ns gives HT ability to study the temporary structure of EAS disk and apply the results to the event reconstruction. The reconstruction is therefore based on chronotron (< 0.5 ns), spatial and temporary distribution of charged particles within the detected EAS event. In this paper, we will show the simulated time distribution of charged particles in the EAS disk vs. distance from the axis and the correspondence to the data. A flow of the reconstruction of standard EAS events and the event display is presented as well as recent HT results

    Horizon-T experiment and detection of Extensive air showers with unusual structure

    No full text
    Horizon-T is an innovative detector system constructed to study temporary structure of Extensive Air Showers (EAS) in the energy range above ~1016 eV coming from a wide range of zenith angles (up to 80°). The system, located at Tien Shan high-altitude Science Station at approximately 3340 meters above the sea level, consists of eight charged particle detection points separated by the distance up to one kilometer. The time resolution of charged particles passage of the detector system is a few ns. This level of resolution allows conducting research of atmospheric development of individual EAS. The total of ~8500 Extensive Air Showers (EAS) with the energy above 1016 eV has been detected during the ~4000 hours of Horizon-T detectors system operations since October 24, 2016 to April 21, 2017. A notable number of events has a spatial and temporary structure that showed the pulses with several maxima (modals or modes) from several detection points of the Horizon-T at the same time as described further in this work. These modes are separated in time from each other starting from tens to thousands of ns. Some are further classified as unusual event with common structure
    corecore