86 research outputs found

    Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this work was to study the vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods.</p> <p>Methods</p> <p>The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection.</p> <p>Results</p> <p>The results showed that the methodologies used for assessing the chemical stability of vitamins B<sub>1</sub>, B<sub>2</sub>, B<sub>6 </sub>and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h.</p> <p>Conclusion</p> <p>The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation.</p

    Systematic derivation of an Australian standard for Tall Man lettering to distinguish similar drug names

    Get PDF
    Rationale, aims and objectives - Confusion between similar drug names can cause harmful medication errors. Similar drug names can be visually differentiated using a typographical technique known as Tall Man lettering. While international conventions exist to derive Tall Man representation for drug names, there has been no national standard developed in Australia. This paper describes the derivation of a risk-based, standardized approach for use of Tall Man lettering in Australia, and known as National Tall Man Lettering. Method - A three-stage approach was applied. An Australian list of similar drug names was systematically compiled from the literature and clinical error reports. Secondly, drug name pairs were prioritized using a risk matrix based on the likelihood of name confusion (a four-component score) vs. consensus ratings of the potential severity of the confusion by 31 expert reviewers. The mid-type Tall Man convention was then applied to derive the typography for the highest priority drug pair names. Results - Of 250 pairs of confusable Australian drug names, comprising 341 discrete names, 35 pairs were identified by the matrix as an ‘extreme’ risk if confused. The mid-type Tall Man convention was successfully applied to the majority of the prioritized drugs; some adaption of the convention was required. Conclusion - This systematic process for identification of confusable drug names and associated risk, followed by application of a convention for Tall Man lettering, has produced a standard now endorsed for use in clinical settings in Australia. Periodic updating is recommended to accommodate new drug names and error reports

    Stress degradation studies and development of stability-indicating TLC-densitometry method for determination of prednisolone acetate and chloramphenicol in their individual and combined pharmaceutical formulations

    Get PDF
    A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v). Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol), simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D.) of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations
    • …
    corecore