10 research outputs found
Impact of Navier’s slip and chemical reaction on the hydromagnetic hybrid nanofluid flow and mass transfer due to porous stretching sheet
Hybrid nanofluids (HNFs) comprise combinations of different nanoparticles suspended in base fluid. Applications of such nanofluids are rising in the areas of energy and biomedical engineering including smart (functional) coatings. Motivated by these developments, the present article examines theoretically the magnetohydrodynamic coating boundary layer flow of HNFs from a stretching sheet under the transverse magnetic field in porous media with chemically reactive nanoparticles. Darcy’s law is deployed. Momentum slips of both first and second order are included as is solutal slip. The transformed boundary value problem is solved analytically. Closed form solutions for velocity are derived in terms of exponential functions and for the concentration field in terms of incomplete Gamma functions by the application of the Laplace transformation technique. The influence of selected parameters e.g. suction/injection, magnetic field and slips on velocity and concentration distributions are visualized graphically. Concentration magnitudes are elevated with stronger magnetic field whereas they are suppressed with greater wall solutal slip. Magnetic field suppresses velocity and increases the thickness of the hydrodynamic boundary layer. The flow is accelerated with reduction in inverse Darcy number and stronger suction direct to reduce in skin friction. The concentration magnitudes are boosted with magnetic field whereas they are depleted with increasing solutal slip. The analysis provides a good foundation for further investigations using numerical methods
Recommended from our members
A Numerical Investigation of Activation Energy Impact on MHD Water-Based Fe<inf>3</inf>O<inf>4</inf> and CoFe<inf>2</inf>O<inf>4</inf> Flow between the Rotating Cone and Expanding Disc
Peer reviewed: TrueAcknowledgements: The preliminary discussion of this problem was initiated during a visit to Cambridge by U.S.M. (U.S. Mahabaleshwar) through the Cambridge-Hamid Visiting Research Fellowship in 2016 and the support for this visit by Cambridge University is acknowledged gratefully by U.S.M.Publication status: PublishedHybrid nanofluids have caught the attention of scholars and investigators in the present technological period due to their improved thermophysical features and the desire to boost heat transfer rates compared to those of conventional fluids. The present paper is mainly concerned with heat transmission in cone-disk geometry in the presence of a magnetic field, activation energy, and non-uniform heat absorption/generation. In this work, the cone-disk (CD) apparatus is considered to have a rotating cone (RC) and a stretching disk, along with iron oxide and cobalt ferrite-based hybrid nanofluid. Appropriate similarity transformations are employed to change the physically modeled equations into ordinary differential equations (ODEs). Heat transfer rates at both surfaces are estimated by implementing a modified energy equation with non-uniform heat absorption/generation. The outcomes illustrated that the inclusion of such physical streamwise heat conduction variables in the energy equation has a significant impact on the well-known conclusions of heat transfer rates. To understand flow profile behavior, we have resorted to the RKF-45 method and the shooting method, which are illustrated using graphs. The findings provide conclusive evidence that wall stretching alters the flow, heat, and mass profile characteristics within the conical gap. The wall deformation caused by disk stretching was found to have a potential impact of modifying the centripetal/centrifugal flow characteristics of the disk, increasing the flow velocity and swirling angles. A rise in activation energy leads to an improved concentration field.</jats:p
Mass Transfer Characteristics of MHD Casson Fluid Flow past Stretching/Shrinking Sheet
The paper analyzes steady laminar boundary layer flow of low-conductivity Casson fluid over a stretching/shrinking sheet subjected to a transverse magnetic field in the presence of suction/injection when the fluid far away from the surface is at rest. This flow problem is mathematically modelled and the non-Newtonian fluid under consideration obeys the rheological equation of state by the Casson model. A similarity transformation converts the governing nonlinear partial differential equations into nonlinear ordinary differential equations, which are solved analytically. Using the stream function and velocity components, these results are analyzed in dependence on the Casson fluid parameters, Chandrasekhar number, and mass transpiration parameters