12 research outputs found

    Role of carbon cycle observations and knowledge in carbon management

    Get PDF
    Author Posting. © Annual Reviews, 2003. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 28 (2003): 521-558, doi:10.1146/annurev.energy.28.011503.163443.Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere and may lead to changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These are summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement in the scientific capabilities available for measurement as well as for policy needs. The specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This review focuses on the current knowledge of the carbon cycle, carbon measurement capabilities (with an emphasis on the continental scale) and the relevance of carbon cycle science to carbon sequestration goals.The National Center for Atmospheric Research is supported by the National Science Foundation

    Evaluating energy efficiency policies with energy-economy models

    No full text
    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyze bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioral failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g., unrealistic representation of decision making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modeling issues, techno-economic and environmental aspects, behavioral determinants, and policy considerations
    corecore