167 research outputs found
Theory of solvation in polar nematics
We develop a linear response theory of solvation of ionic and dipolar solutes
in anisotropic, axially symmetric polar solvents. The theory is applied to
solvation in polar nematic liquid crystals. The formal theory constructs the
solvation response function from projections of the solvent dipolar
susceptibility on rotational invariants. These projections are obtained from
Monte Carlo simulations of a fluid of dipolar spherocylinders which can exist
both in the isotropic and nematic phase. Based on the properties of the solvent
susceptibility from simulations and the formal solution, we have obtained a
formula for the solvation free energy which incorporates experimentally
available properties of nematics and the length of correlation between the
dipoles in the liquid crystal. Illustrative calculations are presented for the
Stokes shift and Stokes shift correlation function of coumarin-153 in
4-n-pentyl-4'-cyanobiphenyl (5CB) and 4,4-n-heptyl-cyanopiphenyl (7CB) solvents
as a function of temperature in both the nematic and isotropic phase.Comment: 19 pages, 9 figure
Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV
We report on the highest precision yet achieved in the measurement of the
polarization of a low energy, (1 GeV), electron beam, accomplished
using a new polarimeter based on electron-photon scattering, in Hall~C at
Jefferson Lab. A number of technical innovations were necessary, including a
novel method for precise control of the laser polarization in a cavity and a
novel diamond micro-strip detector which was able to capture most of the
spectrum of scattered electrons. The data analysis technique exploited track
finding, the high granularity of the detector and its large acceptance. The
polarization of the A, ~GeV electron beam was measured with a
statistical precision of ~1\% per hour and a systematic uncertainty of
0.59\%. This exceeds the level of precision required by the \qweak experiment,
a measurement of the vector weak charge of the proton. Proposed future
low-energy experiments require polarization uncertainty ~0.4\%, and this
result represents an important demonstration of that possibility. This
measurement is also the first use of diamond detectors for particle tracking in
an experiment.Comment: 9 pages, 7 figures, published in PR
Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12
CD8alpha(+) and CD103(+) dendritic cells (DCs) play a central role in the development of type 1 immune responses. However, their role in type 2 immunity remains unclear. We examined this issue using Batf3(-/-) mice, in which both of these DC subsets are missing. We found that Th2 cell responses, and related events such as eosinophilia, alternative macrophage activation, and immunoglobulin class switching to IgG1, were enhanced in Batf3(-/-) mice responding to helminth parasites. This had beneficial or detrimental consequences depending on the context. For example, Batf3 deficiency converted a normally chronic intestinal infection with Heligmosomoides polygyrus into an infection that was rapidly controlled. However, liver fibrosis, an IL-13-mediated pathological consequence of wound healing in chronic schistosomiasis, was exacerbated in Batf3(-/-) mice infected with Schistosoma mansoni. Mechanistically, steady-state production of IL-12 by migratory CD103(+) DCs, independent of signals from commensals or TLR-initiated events, was necessary and sufficient to exert the suppressive effects on Th2 response development. These findings identify a previously unrecognized role for migratory CD103(+) DCs in antagonizing type 2 immune responses
Genes Differentially Expressed in Conidia and Hyphae of Aspergillus fumigatus upon Exposure to Human Neutrophils
Aspergillus fumigatus is the most common etiologic agent of invasive aspergillosis in immunocompromised patients. Several studies have addressed the mechanism involved in host defense but only few have investigated the pathogen's response to attack by the host cells. To our knowledge, this is the first study that investigates the genes differentially expressed in conidia vs hyphae of A. fumigatus in response to neutrophils from healthy donors as well as from those with chronic granulomatous disease (CGD) which are defective in the production of reactive oxygen species.Transcriptional profiles of conidia and hyphae exposed to neutrophils, either from normal donors or from CGD patients, were obtained by using the genome-wide microarray. Upon exposure to either normal or CGD neutrophils, 244 genes were up-regulated in conidia but not in hyphae. Several of these genes are involved in the degradation of fatty acids, peroxisome function and the glyoxylate cycle which suggests that conidia exposed to neutrophils reprogram their metabolism to adjust to the host environment. In addition, the mRNA levels of four genes encoding proteins putatively involved in iron/copper assimilation were found to be higher in conidia and hyphae exposed to normal neutrophils compared to those exposed to CGD neutrophils. Deletants in several of the differentially expressed genes showed phenotypes related to the proposed functions, i.e. deletants of genes involved in fatty acid catabolism showed defective growth on fatty acids and the deletants of iron/copper assimilation showed higher sensitivity to the oxidative agent menadione. None of these deletants, however, showed reduced resistance to neutrophil attack.This work reveals the complex response of the fungus to leukocytes, one of the major host factors involved in antifungal defense, and identifies fungal genes that may be involved in establishing or prolonging infections in humans
The Social Studies Curriculum in Atlanta Public Schools During the Desegregation Era
This historical investigation explores how teachers, students, and education officials viewed the social studies curriculum in the local context of Atlanta, and the broader state of Georgia, during the post-Civil Rights era, when integration was a court-ordered reality in the public schools. During the desegregation era, Atlanta schools were led by Atlanta Public Schools (APS) Superintendent, Dr. Alonzo Crim. Brought to Atlanta as part of a desegregation compromise, Dr. Crim became APS\u27s first African American superintendent. In particular, the authors investigate how national social studies movements, such as Man: A Course of Study (MACOS), inquiry-based learning, co-curriculum activities, and standards movements, adapted to fit this Southeastern locale, at a time when schools were struggling to desegregate. Local curriculum documents written in the 1970s reveal a traditional social studies curriculum. By the 1980s, APS\u27s social studies curriculum guides broadened to include a stronger focus on an enacted community—inside the classroom and around the world. In oral history interviews, however, former teachers, students, and school officials presented contrasting perspectives of how the social studies curriculum played out in the reality of Atlanta\u27s public schools during the desegregation era
Comparative genomics of the major parasitic worms
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms
Human and mouse essentiality screens as a resource for disease gene discovery.
The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery
Human and mouse essentiality screens as a resource for disease gene discovery
The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery. Discovery of causal variants for monogenic disorders has been facilitated by whole exome and genome sequencing, but does not provide a diagnosis for all patients. Here, the authors propose a Full Spectrum of Intolerance to Loss-of-Function (FUSIL) categorization that integrates gene essentiality information to aid disease gene discovery
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …