21 research outputs found
Artificial Modulation of the Gating Behavior of a K+ Channel in a KvAP-DNA Chimera
We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel
Differences in Conformation and Conformational Dynamics Between Cisplatin and Oxaliplatin DNA Adducts
A platinum-based hybrid drug design approach to circumvent acquired resistance to molecular targeted tyrosine kinase inhibitors
Three molecular targeted tyrosine kinase inhibitors (TKI) were conjugated to classical platinum-based drugs with an aim to circumvent TKI resistance, predominately mediated by the emergence of secondary mutations on oncogenic kinases. The hybrids were found to maintain specificity towards the same oncogenic kinases as the original TKI. Importantly, they are remarkably less affected by TKI resistance, presumably due to their unique structure and the observed dual mechanism of anticancer activity (kinase inhibition and DNA damage). The study is also the first to report the application of a hybrid drug approach to switch TKIs from being efflux transporter substrates into non-substrates. TKIs cannot penetrate into the brain for treating metastases because of efflux transporters at the blood brain barrier. The hybrids were found to escape drug efflux and they accumulate more than the original TKI in the brain in BALB/c mice. Further development of the hybrid compounds is warranted
DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner
Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein
The La protein is a conserved component of eukaryotic ribonucleoprotein complexes that binds the 3 poly(U)-rich elements of nascent RNA polymerase III (pol III) transcripts to assist folding and maturation. This specific recognition is mediated by the N-terminal domain (NTD) of La, which comprises a La motif and an RNA recognition motif (RRM). We have determined the solution structures of both domains and show that the La motif adopts an alpha/beta fold that comprises a winged-helix motif elaborated by the insertion of three helices. Chemical shift mapping experiments show that these insertions are involved in RNA interactions. They further delineate a distinct surface patch on each domain containing both basic and aromatic residues that interacts with RNA and accounts for the cooperative binding of short oligonucleotides exhibited by the La NTD
