325 research outputs found

    The feasibility of online video calling to engage patients with cystic fibrosis in exercise training.

    Get PDF
    Introduction Physical activity, including structured exercise, is an essential component in the management of cystic fibrosis. The use of telehealth such as video-calling may be a useful method for the delivery of exercise and physical activity interventions, though the feasibility of this remains unknown. Methods Nine patients with cystic fibrosis (three female, six male, 30.9 ± 8.7 years) volunteered to participate. Participants completed an eight-week exercise training intervention conducted via Skype, using personalised exercises, with all sessions supervised by an exercise therapist. Feasibility was assessed by demand, implementation, practicality and acceptability. Changes in anthropometric, pulmonary, physical activity and quality of life variables were also assessed. Results Two male participants withdrew from the study, citing lack of available time. The remaining participants found use of Skype useful, with a mean satisfaction rating of 9/10, and three participants requesting to continue the sessions beyond the duration of the study. Mean compliance with sessions was 68%, with mean duration of sessions being 20 min. A total of 25% of calls suffered from technical issues such as video or audio lags. Anthropometric, pulmonary, physical activity and quality of life variables remained unchanged over the course of the study period. Discussion The use of Skype to deliver an exercise intervention to patients withcystic fibrosis was found to be technologically feasible, and acceptable among participants. Findings have implications for clinical practice and could allow care teams to engage patients remotely in exercise. Further research is required to assess the efficacy of this modality on increasing physical activity and associated health outcomes

    Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK

    Get PDF
    IntroductionThroughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future.MethodsIn this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital.ResultsOur results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times.DiscussionThese analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19

    Structure Based Design and Synthesis of Peptide Inhibitor of Human LOX-12: In Vitro and In Vivo Analysis of a Novel Therapeutic Agent for Breast Cancer

    Get PDF
    Human breast cancer cell proliferation involves a complex interaction between growth factors, steroid hormones and peptide hormones. The interaction of growth factors, such as epidermal growth factor (EGF), with their receptors on breast cancer cells can lead to the hydrolysis of phospholipids and release of fatty acid such as arachidonic acid, which can be further metabolized by cyclooxygenase (COX) and lipoxygenase (LOX) pathways to produce prostaglandins. The high concentration of prostaglandins has been associated with chronic inflammatory diseases and several types of human cancers. This is due to the over expression COX, LOX and other inflammatory enzymes. Ten peptides were designed and synthesized by solid phase peptide synthesis and analyzed in vitro for enzyme inhibition. Out of these peptides, YWCS had shown significant inhibitory effects. The dissociation constant (KD) was determined by surface plasmon resonance (SPR) analysis and was found to be 3.39×10−8 M and 8.6×10−8 M for YWCS and baicalein (positive control), respectively. The kinetic constant Ki was 72.45×10−7 M as determined by kinetic assay. The peptide significantly reduced the cell viability of estrogen positive MCF-7 and estrogen negative MDA-MB-231 cell line with the half maximal concentration (IC50) of 75 µM and 400 µM, respectively. The peptide also induced 49.8% and 20.8% apoptosis in breast cancer cells MCF-7 and MDA-MB-231, respectively. The YWCS was also found to be least hemolytic at a concentration of 358 µM. In vivo studies had shown that the peptide significantly inhibits tumor growth in mice (p<0.017). This peptide can be used as a lead compound and complement for ongoing efforts to develop differentiation therapies for breast cancer

    Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK

    Get PDF
    INTRODUCTION: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. METHODS: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. RESULTS: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. DISCUSSION: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19

    Surplus Photosynthetic Antennae Complexes Underlie Diagnostics of Iron Limitation in a Cyanobacterium

    Get PDF
    Chlorophyll fluorescence from phytoplankton provides a tool to assess iron limitation in the oceans, but the physiological mechanism underlying the fluorescence response is not understood. We examined fluorescence properties of the model cyanobacterium Synechocystis PCC6803 and a ΔisiA knock-out mutant of the same species grown under three culture conditions which simulate nutrient conditions found in the open ocean: (1) nitrate and iron replete, (2) limiting-iron and high-nitrate, representative of natural high-nitrate, low-chlorophyll regions, and (3) iron and nitrogen co-limiting. We show that low variable fluorescence, a key diagnostic of iron limitation, results from synthesis of antennae complexes far in excess of what can be accommodated by the iron-restricted pool of photosynthetic reaction centers. Under iron and nitrogen co-limiting conditions, there are no excess antennae complexes and variable fluorescence is high. These results help to explain the well-established fluorescence characteristics of phytoplankton in high-nutrient, low-chlorophyll ocean regions, while also accounting for the lack of these properties in low-iron, low-nitrogen regions. Importantly, our results complete the link between unique molecular consequences of iron stress in phytoplankton and global detection of iron stress in natural populations from space

    Innovations in total knee replacement: new trends in operative treatment and changes in peri-operative management

    Get PDF
    The human knee joint can sustain damage due to injury, or more usually osteoarthritis, to one, two or all three of the knee compartments: the medial femorotibial, the lateral femorotibial and the patellofemoral compartments. When pain associated with this damage is unmanageable using nonsurgical techniques, knee replacement surgery might be the most appropriate course of action. This procedure aims to restore a pain-free, fully functional and durable knee joint. Total knee replacement is a well-established treatment modality, and more recently, partial knee replacement—more commonly known as bi- or unicompartmental knee replacement—has seen resurgence in interest and popularity. Combined with the use of minimally invasive surgery (MIS) techniques, gender-specific prosthetics and computer-assisted navigation systems, orthopaedic surgeons are now able to offer patients knee replacement procedures that are associated with (1) minimal risks during and after surgery by avoiding fat embolism, reducing blood loss and minimising soft tissue disruption; (2) smaller incisions; (3) faster and less painful rehabilitation; (4) reduced hospital stay and faster return to normal activities of daily living; (5) an improved range of motion; (6) less requirement for analgesics; and (7) a durable, well-aligned, highly functional knee. With the ongoing advancements in surgical technique, medical technology and prosthesis design, knee replacement surgery is constantly evolving. This review provides a personal account of the recent innovations that have been made, with a particular emphasis on the potential use of MIS techniques combined with computer-assisted navigation systems to treat younger, more physically active patients with resurfacing partial/total implant knee arthroplasty

    Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules

    Get PDF
    Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces

    Augmenting Autologous Stem Cell Transplantation to Improve Outcomes in Myeloma

    Get PDF
    Consolidation with high-dose chemotherapy and autologous stem cell transplantation (ASCT) is the standard of care for transplantation-eligible patients with multiple myeloma, based on randomized trials showing improved progression-free survival with autologous transplantation after combination chemotherapy induction. These trials were performed before novel agents were introduced; subsequently, combinations of immunomodulatory drugs and proteasome inhibitors as induction therapy have significantly improved rates and depth of response. Ongoing randomized trials are testing whether conventional autologous transplantation continues to improve responses after novel agent induction. Although these results are awaited, it is important to review strategies for improving outcomes after ASCT. Conditioning before ASCT with higher doses of melphalan and combinations of melphalan with other agents, including radiopharmaceuticals, has been explored. Tandem ASCT, consolidation, and maintenance therapy after ASCT have been investigated in phase III trials. Experimental cellular therapies using ex vivo–primed dendritic cells, ex vivo–expanded autologous lymphocytes, Killer Immunoglobulin Receptor (KIR)-mismatched allogeneic natural killer cells, and genetically modified T cells to augment ASCT are also in phase I trials. This review summarizes these strategies and highlights the importance of exploring strategies to augment ASCT, even in the era of novel agent induction

    Publisher Correction: MEMOTE for standardized genome-scale metabolic model testing

    Get PDF
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.(undefined)info:eu-repo/semantics/publishedVersio
    • …
    corecore