429 research outputs found

    Spin Waves in Quantum Antiferromagnets

    Full text link
    Using a self-consistent mean-field theory for the S=1/2S=1/2 Heisenberg antiferromagnet Kr\"uger and Schuck recently derived an analytic expression for the dispersion. It is exact in one dimension (d=1d=1) and agrees well with numerical results in d=2d=2. With an expansion in powers of the inverse coordination number 1/Z1/Z (Z=2dZ=2d) we investigate if this expression can be {\em exact} for all dd. The projection method of Mori-Zwanzig is used for the {\em dynamical} spin susceptibility. We find that the expression of Kr\"uger and Schuck deviates in order 1/Z21/Z^2 from our rigorous result. Our method is generalised to arbitrary spin SS and to models with easy-axis anisotropy \D. It can be systematically improved to higher orders in 1/Z1/Z. We clarify its relation to the 1/S1/S expansion.Comment: 8 pages, uuencoded compressed PS-file, accepted as Euro. Phys. Lette

    A method of specimen corrosion protection for high temperature creep testing

    Get PDF
    The determination of mechanical properties of materials at elevated temperature presents difficulties, particularly when the material to be tested is subject to oxidation. Various methods have been employed to permit the evaluation of high temperature creep properties. The method described in this paper was developed on the basis of modifications of a technique developed for the protection of high temperature fatigue specimens. The method involves encasing the creep specimen in a flexible capsule which is capable of withstanding exposure to the atmosphere for extended periods at temperatures up to 1000C. Extensive testing of materials such as uranium and tantalum has provided the basis for claims relative to the effectiveness of this technique

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure

    Conductivity in a symmetry broken phase: Spinless fermions with 1/d1/d corrections

    Full text link
    The dynamic conductivity σ(ω)\sigma(\omega) of strongly correlated electrons in a symmetry broken phase is investigated in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple cubic lattice. The investigated symmetry broken phase is the charge density wave (CDW) with wave vector Q=(π,π,π)†Q=(\pi,\pi,\pi)^\dagger which occurs at half-filling. The calculations are based on the high dimensional approach, i.e. an expansion in the inverse dimension 1/d1/d is used. The finite dimensionality is accounted for by the inclusion of linear terms in 1/d1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the non symmetry broken and in the symmetry broken phase (AB-CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limit T→0T \to 0 due to a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivity σ(ω)\sigma(\omega) the energy gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d1/d lead to an excitonic resonance lying within the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review B15, in press (October/November 1996) depending on the printer/screen driver, it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them printed separatel

    Thermodynamical Properties of a Spin 1/2 Heisenberg Chain Coupled to Phonons

    Full text link
    We performed a finite-temperature quantum Monte Carlo simulation of the one-dimensional spin-1/2 Heisenberg model with nearest-neighbor interaction coupled to Einstein phonons. Our method allows to treat easily up to 100 phonons per site and the results presented are practically free from truncation errors. We studied in detail the magnetic susceptibility, the specific heat, the phonon occupation, the dimerization, and the spin-correlation function for various spin-phonon couplings and phonon frequencies. In particular we give evidence for the transition from a gapless to a massive phase by studying the finite-size behavior of the susceptibility. We also show that the dimerization is proportional to g2/Ωg^2/\Omega for T<2JT<2J.Comment: 10 pages, 17 Postscript Figure

    Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations

    Full text link
    The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-TcT_c superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for the charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure

    Zero-field incommensurate spin-Peierls phase with interchain frustration in TiOCl

    Full text link
    We report on the magnetic, thermodynamic and optical properties of the quasi-one-dimensional quantum antiferromagnets TiOCl and TiOBr, which have been discussed as spin-Peierls compounds. The observed deviations from canonical spin-Peierls behavior, e.g. the existence of two distinct phase transitions, have been attributed previously to strong orbital fluctuations. This can be ruled out by our optical data of the orbital excitations. We show that the frustration of the interchain interactions in the bilayer structure gives rise to incommensurate order with a subsequent lock-in transition to a commensurate dimerized state. In this way, a single driving force, the spin-Peierls mechanism, induces two separate transitions.Comment: 4 pages, 4 figure

    Exact single spin flip for the Hubbard model in d=∞d=\infty

    Full text link
    It is shown that the dynamics of a single ↓\downarrow-electron interacting with a band of ↑\uparrow-electrons can be calculated exactly in the limit of infinite dimension. The corresponding Green function is determined as a continued fraction. It is used to investigate the stability of saturated ferromagnetism and the nature of the ground state for two generic non-bipartite infinite dimensional lattices. Non Fermi liquid behavior is found. For certain dopings the ↓\downarrow-electron is bound to the ↑\uparrow-holes.Comment: 4 pages, 3 figures included with psfig, Revtex; Phys. Rev. Lett. in press; some amendments made to clarify the calculation of the self-energy, the extrapolation of the continued fraction, and the statements on Fermi-liquid theor

    Nonadiabatic Approach to Spin-Peierls Transitions via Flow Equations

    Full text link
    The validity of the adiabatic approach to spin-Peierls transitions is assessed. An alternative approach is developed which maps the initial magneto-elastic problem to an effective magnetic problem only. Thus the equivalence of magneto-elastic solitons and magnetic spinons is shown. No soft phonon is required for the transition. Temperature dependent couplings are predicted in accordance with the analysis of experimental data.Comment: Latex, 4 pages, Phys. Rev. B, Rap. Comm. in press final version containing some clarification
    • …
    corecore