46 research outputs found
Application of Texture Analysis to Study Small Vessel Disease and BloodâBrain Barrier Integrity
artĂculo 327Evaluamos el uso alternativo del anĂĄlisis de textura para evaluar el papel de la barrera hematoencefĂĄlica (BBB) en la enfermedad de pequeños vasos (SVD).
Utilizamos imĂĄgenes de resonancia magnĂ©tica cerebral de 204 pacientes con accidente cerebrovascular, adquiridas antes y 20 minutos despuĂ©s de la administraciĂłn intravenosa de gadolinio. Segmentamos tejidos, hiperintensidades de la materia blanca (WMH) y aplicamos puntuaciones visuales validadas. Medimos las caracterĂsticas de la textura en todos los tejidos antes y despuĂ©s del contraste y utilizamos ANCOVA para
evalĂșe el efecto de los indicadores de SVD en el cambio anterior / posterior al contraste, Kruskal-Wallis para determinar la importancia entre los grupos de pacientes y los modelos lineales mixtos para las variaciones anteriores / posteriores al contraste en el lĂquido cefalorraquĂdeo (LCR) con puntuaciones Fazekas.
El aumento de la "homogeneidad" textural en los tejidos normales con mayor presencia de indicadores de la EVP fue consecuentemente mĂĄs evidente que en los tejidos anormales. La âhomogeneidadâ textural aumentĂł con la edad, las puntuaciones de los espacios perivasculares de los ganglios basales (p <0,01) y las puntuaciones de la EVP (p <0,05) y fue significativamente mayor en los pacientes hipertensos (p <0,002) y el ictus lacunar (p = 0,04). La hipertensiĂłn (74% de los pacientes), la carga de WMH (mediana = 1.5 ± 1.6% del volumen intracraneal) y la edad (media = 65.6 años, SD = 11.3) predijeron el cambio pre / post-contraste en la sustancia blanca normal, WMH e Ăndice LesiĂłn de trazo. Señal CSF
Incremento con el aumento de SVD post-contraste.
Un patrĂłn general consistente de aumento de la homogeneidad de la textura "con el aumento de la SVD y el cambio posterior al contraste en el LCR con el aumento de WMH sugiere que el anĂĄlisis de textura puede ser Ăștil para el estudio de la integridad de BBB.S
Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke
Rationale: Cerebral small vessel disease (SVD) is common in ageing and patients with dementia and stroke. Its manifestations on magnetic resonance imaging (MRI) include white matter hyperintensities, lacunes, microbleeds, perivascular spaces, small subcortical infarcts, and brain atrophy. Many studies focus only on one of these manifestations. A protocol for the differential assessment of all these features is, therefore, needed.
Aims: To identify ways of quantifying imaging markers in research of patients with SVD and operationalize the recommendations from the STandards for ReportIng Vascular changes on nEuroimaging guidelines. Here, we report the rationale, design, and methodology of a brain image analysis protocol based on our experience from observational longitudinal studies of patients with nondisabling stroke.
Design: The MRI analysis protocol is designed to provide quantitative and qualitative measures of disease evolution including: acute and old stroke lesions, lacunes, tissue loss due to stroke, perivascular spaces, microbleeds, macrohemorrhages, iron deposition in basal ganglia, substantia nigra and brain stem, brain atrophy, and white matter hyperintensities, with the latter separated into intense and less intense. Quantitative measures of tissue integrity such as diffusion fractional anisotropy, mean diffusivity, and the longitudinal relaxation time are assessed in regions of interest manually placed in anatomically and functionally relevant locations, and in others derived from feature extraction pipelines and tissue segmentation methods. Morphological changes that relate to cognitive deficits after stroke, analyzed through shape models of subcortical structures, complete the multiparametric image analysis protocol.
Outcomes: Final outcomes include guidance for identifying ways to minimize bias and confounds in the assessment of SVD and stroke imaging biomarkers. It is intended that this information will inform the design of studies to examine the underlying pathophysiology of SVD and stroke, and to provide reliable, quantitative outcomes in trials of new therapies and preventative strategies
A Variable Region within the Genome of Streptococcus pneumoniae Contributes to Strain-Strain Variation in Virulence
The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that drive progression from colonization to invasive disease and will help direct the development of novel therapeutic strategies
Understanding the role of the perivascular space in cerebral small vessel disease
Small vessel diseases are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood.Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS, and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier (BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD
Spatial inequity in access to healthcare facilities at a county level in a developing country: a case study of Deqing County, Zhejiang, China
Background
The inequities in healthcare services between regions, urban and rural, age groups and diverse income groups have been growing rapidly in China. Equal access to basic medical and healthcare services has been recognized as âa basic right of the peopleâ by Chinese government. Spatial accessibility to healthcare facilities has received huge attention in Chinese case studies but been less studied particularly at a county level due to limited availability of high-resolution spatial data. This study is focused on measuring spatial accessibility to healthcare facilities in Deqing County. The spatial inequity between the urban (town) and rural is assessed and three scenarios are designed and built to examine which scenario is instrumental for better reducing the spatial inequity.
Methods
This study utilizes highway network data, Digital Elevation Model (DEM), location of hospitals and clinics, 2010 census data at the finest level â village committee, residential building footprint and building height. Areal weighting method is used to disaggregate population data from village committee level to residential building cell level. Least cost path analysis is applied to calculate the travel time from each building cell to its closest healthcare facility. Then an integral accessibility will be calculated through weighting the travel time to the closest facility between three levels. The spatial inequity in healthcare accessibility between the town and rural areas is examined based on the coverages of areas and populations. The same method is used to compare three scenarios aimed at reducing such spatial inequity â relocation of hospitals, updates of weighting values, and the combination of both.
Results
50.03 % of residents can reach a county hospital within 15 min by driving, 95.77 % and 100 % within 30 and 60 min respectively. 55.14 % of residents can reach a town hospital within 5 min, 98.04 % and 100 % within 15 and 30 min respectively. 57.86 % of residential building areas can reach a village clinic within 5 min, 92.65 % and 99.22 % within 10 and 15 min. After weighting the travel time between the three-level facilities, 30.87 % of residents can reach a facility within 5 min, 80.46 %% and 99.88 % within 15 and 30 min respectively.
Conclusions
The healthcare accessibility pattern of Deqing County has exhibited spatial inequity between the town and rural areas, with the best accessibility in the capital of the county and poorest in the West of the county. There is a high negative correlation between population ageing and healthcare accessibility. Allocation of more advanced medical and healthcare equipment and highly skillful doctors and nurses to village clinics will be an efficient means of reducing the spatial inequity and further consolidating the national medical security system. GIS (Geographical Information Systems) methods have proven successful method of providing quantitative evidence for policy analysis although the data sets and methods could be further improved
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44Â 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with todayâs technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries